Performance Evaluation and Benefit Analysis

for CHART in Year 2023 - Coordinated Highways Action Response Team -

September 2024

Department of Civil and Environmental Engineering The University of Maryland, College Park

SILLIN

Office of Transportation Mobility and Operations Maryland Department of Transportation State Highway Administration

Performance Evaluation of CHART

The Real-Time Incident Management System (Year 2023)

Table of Contents

EXECUTIVE SUMMARY	3
CHAPTER 1. INTRODUCTION	17
CHAPTER 2. DATA QUALITY ASSESSMENT	22
2.1 Analysis of Data Availability	23
2.2 Analysis of Data Quality	24
CHAPTER 3. ANALYSIS OF DATA CHARACTERISTICS	
3.1 Distribution of Incidents and Disabled Vehicles by Day and Time	29
3.2 Distribution of Incidents and Disabled Vehicles by Road and Location.	
3.3 Distribution of Incidents and Disabled Vehicles by Lane Blockage Type	e47
3.4 Distribution of Incidents and Disabled Vehicles by Blockage Duration.	53
CHAPTER 4. EVALUATION OF EFFICIENCY AND EFFECTIVEN	ESS57
4.1 Evaluation of Detection Efficiency and Effectiveness	58
4.2 Analysis of Response Efficiency	62
4.3 Analysis of Clearance Efficiency	74
4.4 Reduction in Incident Duration	75
4.4 Reduction in Incident Duration	75 77
 4.4 Reduction in Incident Duration CHAPTER 5. ANALYSIS OF RESPONSE TIMES 5.1 Distribution of Average Response Times by Time of Day 	75 77
 4.4 Reduction in Incident Duration CHAPTER 5. ANALYSIS OF RESPONSE TIMES 5.1 Distribution of Average Response Times by Time of Day 5.2 Distribution of Average Response Times by Incident Nature 	75
 4.4 Reduction in Incident Duration	

6.1 Distribution of Average Incident Durations by Nature
6.2 Distribution of Average Incident Durations by County and Region
6.3 Distribution of Average Incident Durations by Weekdays/Ends, Peak/Off-Peak Hours92
6.4 Distribution of Average Incident Durations by CHART Involvement, Pavement
Condition, Heavy Vehicle Involvement, and Road93
CHAPTER 7. BENEFITS FROM CHART'S INCIDENT MANAGEMENT96
7.1 Assistance to Drivers
7.2 Potential Reduction in Secondary Incidents100
7.3 Estimated Benefits due to Efficient Removal of Stationary Vehicles102
7.4 Direct Benefits to Highway Users
CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS115
8.1 Conclusions
8.2 Recommendations and Further Development118
REFERENCES
APPENDIX A: Additional Analysis to incidents/disabled vehicles
APPENDIX B: Benefit Estimation Procedure 129
APPENDIX C: Sources of Images Used in This Report

EXECUTIVE SUMMARY

Objectives

This report presents the performance evaluation study of the Coordinated Highways Action Response Team (CHART) for the Year 2023, including its operational efficiency and resulting benefits. The research team at the Civil Engineering Department of the University of Maryland, College Park (UM), has conducted the annual CHART performance analysis over the past twenty-four years for the State Highway Administration (SHA).

Similar to previous studies, the focus of this task was to evaluate the effectiveness of CHART's ability to detect and manage incidents on major freeways and highways. Assessing the benefits resulting from incident management was equally essential. In addition, this annual report has extended the analysis of incident duration distributions on major highways for better understanding of the incident characteristics and management.

The study consisted of two phases. Phase 1 focused on defining objectives, identifying the available data, and developing the methodology. The core of the second phase involved assessing the efficiency of the incident management program and estimating the resulting benefits using the 2023 CHART incident operations data. As some information essential for efficiency and benefit assessment was not available in the CHART-II database, this study presents only those evaluation results that can be directly computed from the incident management data or derived with statistical methods.

Available Data for Analysis

Upon a request made by SHA, COSMIS began evaluating CHART operations performance in 1996. During the initial evaluation, the 1994 incident management data from the Traffic Operations Center (TOC) were reviewed but for various reasons were not used. Thus, the conclusions drawn were based mostly on information either from other states or from nationwide averaged data published by the Federal Highway Administration.

To better the evaluation quality and also in view of the fact that the Statewide Operations Center (SOC) has been opened in August of 1995, those associated with the evaluation study concluded that the analysis should be based on actual performance data from the CHART program. Hence, in 1996, the UM (Chang and Point-Du-Jour, 1998) was contracted to work jointly with SHA staff to collect, and subsequently research item to analyze incident management data.

This original study and evaluation analysis inevitably faced the difficulty of having insufficient information for analysis, since this was the first time CHART had to collect all previous performance records for a scrupulous evaluation.

The 1997 CHART performance evaluation had the advantage of having relatively substantial information. The collected information comprised incident management records from the Statewide Operations Center (SOC), TOC-3 (positioned in the proximity of the Capital Beltway), and TOC-4 (sited near the Baltimore Beltway) over the entire year, as well as 1997 Accident Report Data from the Maryland State Police (MSP) for secondary incident analysis.

Unlike previous studies, the quality and quantity of data available for performance evaluation have been increased considerably since 1999. This results from CHART reflect the need to keep an extensive operational record in order to justify its costs and to evaluate the benefits of the emergency response operations. Due to CHART's efficient data collection, the records of lane-closure-related incidents increased from 2,567 in 1997 to 40,073 in 2023.

Table E.1 shows the total number of emergency response operations assiduously documented from 2019 to 2023.

	2019	2020	2021	2022	2023	Δ (2023-2022)
Incidents only	38,383	34,590	38,275	38,957	40,073	2.86%
incidents only	(31,750)	(26,702)	(29,546)	(28,972)	(29,993)	(3.52%)
Total 1	79,506	70,115	76,722	75,841	82,987	9.42%
Iotal -	(71,233)	(60 <i>,</i> 665)	(65 <i>,</i> 839)	(63,474)	(70,533)	(11.12%)

Table E.1 Summary of the Total Number of Emergency Responses from 2019 to 2023

Note: 1. Total includes incidents and disabled vehicles (i.e., assists to drivers). 2. Number in the parenthesis shows the incidents or assists responded by CHART.

The main findings from Table E.1 are listed below:

- The total number of recorded incidents in 2023 increased by 2.86% compared to 2022.
- The number of incidents responded by CHART in 2023 increased by 3.52% compared to 2022.
- The numbers of both total emergency responses (including disabled vehicles) and those responded by CHART increased significantly in 2023.

Evolution of the Evaluation Work

CHART has consistently worked to improve its data recording for both major and minor incidents over the past two decades, which accounts for the substantial improvements in data quality and quantity. The evaluation work has also been advanced by the improved availability of data. It has also become imperative to assess the quality of available data and to use only reliable data in the benefit analysis. Thus, from 1999, the performance evaluation reports have included data quality analysis. This aims to ensure continued advancement in the quality of incidentrelated data so as to reliably estimate all potential benefits of CHART operations.

From February 2001, all incidents requesting emergency assistance have been recorded in the CHART-II information system, regardless of CHART's involvement or not. This has significantly enriched the available data for analysis. In the current CHART database system, most incident-related data can be generated directly for computer processing, except that incident-location-related information remains documented in a text format that cannot be processed automatically with a data analysis program.

Distribution of Incidents/Disabled Vehicles

The evaluation methodology was created to use all available data sets that are considered to be of acceptable quality. An analysis of incident characteristics by incident duration and number of blocked lanes was initially conducted.

As shown in Table E.2, the 2023 incident records indicate that there were a total of 3,100 incidents resulting in one-lane blockage, 9,399 incidents causing two-lane closures, and 5,843 incidents blocking three or more lanes. In addition, either disabled vehicles or minor incidents caused a total of 45,044 shoulder blockages. A comparison of the lane-blockage incidents and disabled vehicles data over the past five years is summarized in Table E.2:

Table L.2 List of incidents/ Disabled venicles by Lane Diockage Type								
	2019	2020	2021	2022	2023	∆ (2023-2022)		
Shoulder ²	48,485	41,409	45,258	44,933	45,044	1.71%		
1 lane	3,480	3,221	3,290	3,320	3,100	-6.63%		
2 lanes ³	8,823	8,205	9,328	9,238	9,399	1.74%		
3 lanes ³	2,965	2,780	3,062	3,235	3,392	4.85%		
≥ 4 lanes ³	2,301	2,331	2,472	2,457	2,451	-0.24%		

 Table E.2 List¹ of Incidents/Disabled vehicles by Lane Blockage Type

*Note: 1. This analysis is based only on the samples with complete information for the lane blockage status.
2. Shoulder Lane Blockages include events that have disabled vehicles (i.e., assists to drivers)
3. A shoulder lane blockage is counted as one lane blockage (e.g., 2-lane blockage can either be two travel lanes or one travel lane and one shoulder blockage.)

Most of those incidents/disabled vehicles were distributed along six major commuting corridors: I-495/95, which experienced a total of 9,768 incidents/disabled vehicles in 2023; I-695, I-95, US-50, I/MD-295, and I-270 with 8,534, 19,885, 7,449, 2,756, and 3,994 incidents/disabled vehicles, respectively. CHART managed an average of 54 emergency requests per day on I-95 alone, and 27, 23, 20, 8 and 11 responses per day for I-495/95, I-695, US-50, I/MD-295, and I-270, respectively. The distribution of incidents/disabled vehicles on those major commuting corridors between 2018 and 2023 is shown in Table E.3:

	2019	2020	2021	2022	2023	∆ (2023 - 2022)		
I-495/95	10,589	10,339	12,068	10,371	9,768	-5.81%		
I-695	10,705	8,025	8,585	9,529	8,534	-10.44%		
I-95	14,729	12,937	12,838	14,052	19 <i>,</i> 885	41.51%		
US-50	7,208	6,492	7,807	6,272	7,449	18.77%		
I/MD-295	3,152	2,694	3,120	2,738	2,756	0.66%		
I-270	4,892	4,058	4,484	4,200	3,994	-4.9%		

|--|

* This analysis is based on incidents and disabled vehicles having the information of their event locations recorded in the database. Freeway segments experiencing most incidents and disabled vehicle assists during the AM and PM hours in 2023 are shown in Table E.4. The highest frequency of incidents occurred on the I-95 northbound segment between Exits 67 and 74 in both AM and PM peaks, respectively. The southbound segment on I-95 between Exits 67 and 74 ranked the first with the respect to the number of disabled vehicle requests in 2023 in both AM and PM peak hours, respectively.

Table E.4 Top 10 Freeway Segments with the Most Incidents/Disabled Vehicles in 2023

	Incidents					Disabled	vehicles	
	MA	Peak	PM	Peak	AM	Peak	PM	Peak
1	I-95 N	Exit 67&74	I-95 N	Exit 67&74	I-95 S	Exit 67&74	I-95 S	Exit 67&74
2	I-95 S	Exit 56&57	I-95 N	Exit 55&56	I-95 N	Exit 67&74	I-95 N	Exit 67&74
3	I-695 IL	Exit 43&1	I-95 S	Exit 67&74	I-95 N	Exit 64&67	I-95 N	Exit 64&67
4	I-95 S	Exit 67&74	I-95 S	Exit 56&57	I-95 N	Exit 61&64	I-95 S	Exit 62&64
5	I-95 N	Exit 55&56	I-695 IL	Exit 11&12	I-95 N	Exit 80&85	I-95 N	Exit 77&80
6	I-95 N	Exit 74&77	I-95 N	Exit 74&77	I-95 S	Exit 62&64	I-95 S	Exit 100&109
7	I-495 OL	Exit 27&28	I-95 N	Exit 64&67	I-95 S	Exit 64&67	I-95 S	Exit 64&67
8	I-895 S	Exit 8&12	I-95 N	Exit 61&64	I-95 N	Exit 77&80	I-95 N	Exit 100&109
9	I-95 S	Exit 58&59	I-895 S	Exit 8&12	I-95 N	Exit 89&93	I-95 S	Exit 93&100
10	I-95 S	Exit 74&77	I-95 S	Exit 64&67	I-95 S	Exit 77&80	I-95 N	Exit 61&64

* This analysis is based on incidents and disabled vehicles having the information of their event locations recorded in the database. It should be mentioned that most incidents/disabled vehicles on major freeways did not block traffic for more than one hour. For instance, about 74 percent of incidents/disabled vehicles had durations shorter than 30 minutes in 2023. This observation can be attributed to the nature of the incidents and, more probably, to the efficient response of CHART. The distributions of incidents/disabled vehicle duration from 2019 to 2023 are summarized in Table E.5:

Table E.5 Distribution	* of Incidents/Disabled	Vehicle Duration	from 2019 to 2023
------------------------	-------------------------	-------------------------	-------------------

Duration (Hrs)	2019	2020	2021	2022	2023
D < 0.5	73%	73%	72%	72%	74%
0.5 ≤ D < 1	16%	15%	15%	16%	15%
1 ≤ D < 2	7%	7%	8%	8%	7%
2 ≤ D	5%	5%	5%	5%	4%

* This analysis is based on incidents and disabled vehicles (i.e., assists to drivers) which have complete information for the event duration.

In brief, it is apparent that the highway networks served by CHART are still plagued by a high frequency of incidents with durations ranging from 10 to over 120 minutes. Those incidents were the primary contributors to traffic congestion in the entire region, especially on the major commuting highway corridors, such as I-95, I-270, I-495/95, and I-695.

Efficiency of Operations

Detection, response, and traffic recovery are the three vital performance indicators associated with an incident management program. Unfortunately, data needed for the detection and response time analysis are not yet available under the CHART data system. SHA patrols and MSP remain the main sources of incident detection and response.

The average response time is defined as the average time from receiving an emergency request to the arrival of an emergency response unit. Table E.6 shows the average response times of 14.88, 11.51, 14.40, and 9.95 minutes for TOC-4, TOC-7, SOC, and AOC, respectively, in 2023. Note that as of January 2022, TOC-3 has been relocated to SOC due to staff related issues. TOC-7, SOC and AOC provided more prompt response services in 2023 than in 2022, while TOC-4 experiences a slightly increase in response time in 2023. Note that incidents/disabled vehicles included in this analysis were responded by various units, including CHART and non-CHART agencies.

Response	2019	2020	2021	2022		2023 ⁵	
Time (mins)	2015	2020	2021	LULL	During OH ⁴	After OH	Overall
TOC-4	13.40	12.98	14.03	14.51	14.88	12.41	14.88
					(4,427)	(13)	(4,440)
TOC-7	11.38	11.42	11.83	11.78	11.51	10.59	11.42
					(2,873)	(313)	(3,186)
SOC	13 93	14 32	14 67	14.67 14.79	14.40	N/A	14.40
	10.55	14.52	11.07		(11,266)		(11,266)
100	٥ <u>م</u>	0.02	0.45	10.04	9.95	NI/A	9.95
AUC	0.99	9.05	9.45	10.04	(8,616)	IN/A	(8,616)
OTUED	11.00	2.52	0.50	12.00	NI/A	6.51	6.51
OTHER	11.68	2.53	8.58	13.09	N/A	(16)	(16)
Weighted Average	11.88	11.64	12.25	12.88	12.76 (27,183)	10.47 (342)	12.74 (27,525)

Table E.6 Evolution of Response Times^{1,2,3} by Center from 2019 to 2023

* Note: 1. This analysis is based on the data of incidents and disabled vehicles (i.e., assists to drivers) which have indicated the responsible operation center and response times.

2. This analysis includes those sample data which have response times between 1 minute and 60 minutes.

3. Events included in this analysis were responded by various units, including CHART, fire boards, state/local polices, private towing companies, etc.

4. OH stands for Operational Hours: TOC-7 operates 5 a.m. – 9 p.m. Monday through Friday. TOC-3 and TOC-4 began operating seven days a week (5 a.m. - 9 p.m.) as of August 30th, 2017. SOC and AOC operate on a 24 hour/seven-days-a-week basis.

5. The number in each parenthesis indicates the numbers of available samples with acceptable quality for analysis.

Table E.7 presents that incidents are likely to be responded more promptly than disabled vehicles during operational hours among all response centers in 2023. The average incident response time for CHART units in 2023 is 11.97 minutes, demonstrating a pattern similar to that of 2022.

Response	Operation	nal Hours ³	Non-operational Hours			Total	
Time (mins)	Incident	Disabled Vehicle	Incident	Incident Disabled Vehicle		Disabled Vehicle	Sub-total
TOC-4	14.30 (3,241) ⁴	18.74 (1,262)	12.98 (13)	N/A	14.30 (3,254)	18.74 (1,262)	15.54 (4,516)
TOC-7	11.91 (2,290)	12.95 (566)	11.29 (237)	9.28 (72)	11.85 (2,527)	12.54 (638)	11.99 (3,165)
SOC	13.77 (7,752)	18.69 (3,265)	N/A	N/A	13.77 (7,752)	18.69 (3,265)	15.23 (11,017)
AOC	8.18 (5 <i>,</i> 575)	10.72 (2,477)	N/A	N/A	8.18 (5,575)	10.72 (2,477)	8.96 (8,052)
OTHER	19.60 (1)	N/A	7.18 (14)	1.47 (1)	8.01 (15)	1.47 (1)	7.60 (16)
Weighted Average	11.98 (18,859)	15.66 (7,570)	11.15 (264)	9.17 (73)	11.97⁵ (19,123)	15.60 (7,643)	13.01 (26,766)

Table E.7 Comparisons of CHART Response Performance^{1,2} during and after Operational Hours in 2023

* Note: 1. This analysis is based on the dataset of incidents and disabled vehicles (assistance to drivers) which have indicated responsible operation center and response times.

2. This includes those sample events for which available response times of CHART units are between 1 minute and 60 minutes. Events included in this analysis were responded to by CHART.

3. Operational Hours: TOC-7 operate 5 a.m. – 9 p.m. Monday through Friday. TOC-4 began operating seven days a week (5 a.m. - 9 p.m.) as of August 30th, 2017. SOC and AOC operate on a 24 hour/seven-days-a-week basis.

4. The number in each parenthesis indicates the numbers of available samples with acceptable quality for analysis.

5. The average incident response time for CHART units is 11.97088 minutes in 2023.

Also, the 2023 data show that CHART's response operations are more efficient when incidents are more severe and cause lane blockages. In general, more severe incidents, especially involving in fatalities or heavy vehicles, demand longer clearance times.

Analysis of Incident Durations

To better understand the contributions of the incident management program, the study compared the average duration of incidents to which CHART responded and those managed by other agencies. For example, the difference on the average response times for one-lane-blockage incidents between with and without CHART involvement is about 10.03 minutes.

The duration of incidents managed by CHART response units averaged 25.41 minutes, shorter than the average duration of 36.29 minutes for those incidents by other agencies. On average, CHART operations in Year 2023 reduced the average incident duration by about 30.0 percent.

Year	With CHART (mins)	Without CHART (mins)
2019	25.75	33.91
2020	27.04	37.02
2021	26.31	37.82
2022	26.02	37.54
2023	25.41	36.29

Performance improvement of CHART operations from years 2019 to 2023 is summarized in Table E.8: Table E.8 Comparison of Average Incident Duration* with and without CHART Response

* This analysis is based on incidents which have included the information of event duration, lane blockage, and response units.

For effective and efficient traffic management after incidents, responsible agencies can convey the information to travelers by updating the variable message signs. They can also estimate the resulting queue length and assess the need to implement detour operations and any other control strategies to mitigate congestion. To maximize the effectiveness of those operational strategies, a reliably predicted/estimated incident duration will certainly play an essential role.

Hence, this study conducted a statistical analysis of incident durations, which provides some further insights into the characteristics of incidents under various conditions. In this analysis, the distributions of average incident duration are identified by predefined categories, including Nature, County, County and Nature, Weekdays and Weekends, Peak and Off-Peak Hours, CHART Involvement, and Roads.

The average duration for incidents involving fatalities (CF) was 92 minutes, while those causing property damage (CPD) and personal injuries (CPI) lasted, on average, 34 and 49 minutes, respectively (see Figure E.1). The average duration for incidents by only disabled vehicles was 21 minutes, close to those classified as "Others" (e.g., debris, vehicles on fire, police activities, etc.).

Figure E.1 Distribution of Average Duration by Incident Nature in 2023

Performance of MSP TIM units

As of February 1, 2023, the Maryland State Police (MSP) has a dedicated motorcycle unit to act as MDOT SHA's CHART Traffic Incident Management (TIM) Unit, which works directly with the CHART Field Patrol Units and communicates directly with CHART traffic management centers (TMCs) during the bulk of in-service hours and special events, helping to alleviate pressure on local MSP barracks. This unit also serves as the primary point-of-contact and response for MDOT SHA Departmental crashes in several of its Districts and as the first point-of-contact and coordination point for MSP resources during special events (funeral processions, football games, etc.). It is able to handle reports and investigation in most cases, giving MDOT SHA more direct access to information quickly. Table E.9 shows that the TIM units responded to more than 500 events in 2023 and led to faster responses to incidents.

		With MSP TIM	With CHART but without	With CHART					
		Units (A) ²	IVISP I IIVI UNIT (B)	(A+B)					
Number of Responded Events									
Number of Disabled Vehicle Assists		99	40,441	40,540					
Number of Incident Responses		435	29,558	29,993					
Total Number of Re	sponded Events	534	69,999	70,533					
	Response Efficiency and Effectiveness								
Average Bespense	Disabled Vehicles	17.62	15.59	15.60					
Time (min) ²	Incidents	10.17	11.22	11.21					
nine (nini)	Total	10.98	12.50	12.49					
Average CHART	Disabled Vehicles	17.88	15.59	15.60					
Response Time	Incidents	12.66	11.96	11.97					
(min) ³	Total	13.21	13.00	13.01					
Average Duration	Disabled Vehicles	26.97	14.82	14.84					
(min) ⁴	Incidents	40.76	28.45	28.69					
(11111)	Total	39.19	21.57	21.69					

Table E.9 Performance of MSP TIM units in Year 2023

Note:1. One event may be responded to by more than one TIM units.

2. This includes those sample events for which available response times of any response units, including CHART, fire boards, state/local polices, private towing companies, etc., are between 1 minute and 60 minutes.

3. This includes those sample events for which available response times of CHART units are between 1 minute and 60 minutes.

4. This includes those sample events for which the durations are between 1 minute and 120 minutes.

Resulting Benefits

The benefits due to CHART operations were estimated directly from the available data, including assistance to drivers and reductions in delay times, fuel consumption, emissions, and secondary incidents. In 2023, CHART responded to a total of 29,993 incidents, and assisted 40,540 highway drivers who may otherwise have caused incidents or rubbernecking delays to highway traffic. In addition, the efficient removal of stationary vehicles and large debris from travel lanes by CHART patrol units may have prevented 1,066 potential lane-changing-related collisions in 2023, as vehicles approaching those conditions would have been forced to perform unsafe mandatory lane changes.

CORSIM, a traffic simulation program produced by the Federal Highway Administration (FHWA),

was used to estimate the direct benefits attributed to delay reduction time, and it was discovered that various factors, including traffic and heavy vehicle volumes, the number of lane closures, the number of incident responses, and incident durations, affect the resulting delay (see Chapter 7 for further information on benefits estimate). For instance, several primary factors (such as the number of incidents eligible for the benefit estimate and drivers' value of time) have increased in 2023. The ratio in difference between incident durations of with and without CHART exhibits a decrease in 2023. Overall, the delay reduction due to CHART's services in 2023 (42.47 million vehicle-hours) increased by 3.60 percent, compared to the performance in 2022 (40.99 million vehicle-hours). The collective impacts of all those key contributing factors have resulted in a net benefit increase from \$2,030.56M in 2022 to \$2,230.57M in 2023. A comparison of the direct benefits from reduced delay times, fuel consumptions, and emissions, from 2019 to 2023, is summarized in Table E.10:

	Total Direct Benefits (million) ^{1,2,3,4}	# of Incidents Eligible for the Benefit Estimate⁵
2019	\$1.393.38	30,793
2020	\$1,080.83	28,513
2021	\$1,875.25	31,253
2022	\$2,030.56	32,130
2023	\$2,230.57	33,297

Table E.10 Comparison of Direct Benefits from 2019 to 2023

Note: 1. Results are based on the data of the corresponding year from the U.S Census Bureau and Energy Information Administration.

2. The direct benefits represent reductions from delay time, fuel consumptions, and emissions due to the CHART effective operations.

3. The direct benefits rely on numerous factors (i.e., traffic and heavy vehicle volumes, the number of lane blockages, the number of incidents responded, and incident durations).

4. The direct benefits are estimated based on the car delay reduction occurring over all roads covered by CHART and the truck delay reduction only occurring along major roads.

5. The direct benefits are estimated only based on the incidents causing travel lane closure(s).

Most benefits were produced from delay reductions due to CHART's efficient incident response and management, especially along the major corridors which are the primary contributors to traffic congestion in Maryland. The estimated delay reduction due to CHART's services on I-95, I-495, I-270, I-695, I-70, and I-83 are 9.75, 4.53, 1.03, 5.70, 2.83, and 0.84 million vehicle-hours, respectively, in 2023. Such direct benefits for users over each major road in 2023 are summarized in Table E.11:

Roads	Total Direct Benefits (million) ^{1,2,3}	# of Incidents Eligible for the Benefit Estimate ⁴
I-95	\$525.37	6,349
I-95/495	\$239.16	3,635
I-270	\$53.44	616
I-695	\$299.11	3,603
I-70	\$152.42	1,549
I-83	\$44.94	1,142
Others	\$916.14	16,403
Total	\$2,230.57	33,297

Table E.11 Direct Benefits for Major Roads in 2023 due to CHART operations

Note: 1. Results are based on the data of the corresponding year from the U.S Census Bureau and Energy Information Administration.

2. The direct benefits represent reductions in car/truck delay times, fuel consumptions, and emissions due to the CHART effective operations.

3. The direct benefits vary with some key factors, including traffic and heavy vehicle volumes, the number of lane blockages, the number of incidents responded, and incident durations.

4. The direct benefits are estimated only based on the incidents causing travel lane closure(s).

The main contributing factors used for estimating benefits are listed and tabulated as follows:

- The total number of incidents used for the benefit estimate increased by about 3.63 percent from year 2022 to year 2023, as shown in Table E.12.
- The ratio, reflecting the difference between incident durations with CHART and those without CHART, decreased from 29.12 percent in 2022 to 27.09 percent in 2023, as shown in Table E.13.
- Table E.14 shows that the adjusted AADT in 2023 increased by 1.09 percent on the major roads in Maryland compared to 2022.
- Table E.15 shows that average truck percentage decreased in year 2023 over all major roads in Maryland, by 2.22 percent on average. However, the truck percentage in year 2023 increased significantly on I-495, I-695 and I-70, which are major truck routes.

Table E.12 The Total Number of Incidents Eligible for the Benefit Estimate

	2022	2023	Δ('22 ~ '23) ²
No. of Incidents ¹	32,130	33,297	3.63%

Note: 1. They only include the incidents causing main lanes blockage. To estimate benefits, the incidents causing only shoulder lanes blockage are excluded.

2. The percentage change in No. of Incidents (X) from Year 2022 to Year 2023 is calculated as

follows:
$$\Delta \mathbf{X}(\%) = \frac{X_{2023} - X_{2022}}{X_{2022}} \times 100$$

Table E.13 Incident duration reduction in year 2022 and 2023¹

	With CHART(mins)	Without CHART(mins)	Difference(mins)	Ratio in Difference
	(A)	(B)	(B-A)	((B-A)/ B)
2022	27.67	39.04	11.37	29.12%
2023	27.42	37.61	10.19	27.09%
Δ ('22 ~ '23) ²	-0.90%	-3.66%	-10.38%	-6.98%

Note: 1. The analysis is based on incidents that have main lanes blockage.

2. The percentage change in incident duration (X) from Year 2022 to Year 2023 is calculated as

follows: $\Delta \mathbf{X}(\%) = \frac{X_{2023} - X_{2022}}{X_{2022}} \times 100$

	Year	I-495	I-95	I-270	I-695	MD 295	US 50	US 1	I-83	I-70	Total
\sum AADT(vplph)*PHF	2022	11,836	7,927	7,076	10,529	4,112	2,356	4,655	2,457	3,220	54,167
segments	2023	12,079	7,905	7,612	10,453	4,086	2,404	4,333	2,487	3,400	54,756
∆('22 ~ '23) (%)*		2.1%	-0.3%	7.6%	-0.7%	-0.6%	2.0%	-6.9%	1.2%	5.6%	1.09%

Table E.14 The adjusted AADT (with peak hour factor) for Major Roads from 2022 and 2023

Note: The percentage change in the adjusted AADT(X) from Year 2022 to Year 2023 is calculated as follows:

$$\Delta \mathbf{X}(\%) = \frac{X_{2023} - X_{2022}}{X_{2022}} \times 100$$

Table E.15 Truck percentage for Major Roads from year 2022 and 2023

	Year	I-495	I-95	I-270	I-695	MD 295	US 50	US 1	I-83	I-70	Average
Trunch 0/	2022	6.15	9.91	4.26	5.88	1.83	8.09	2.77	12.93	8.19	6.67
Truck %	2023	7.96	9.77	3.48	6.50	1.77	5.26	3.85	10.43	9.65	6.52
Δ('22~'2	3)(%)*	29.6%	-1.5%	-18.3%	10.5%	-3.4%	-35.0%	39.2%	-19.4%	17.9%	-2.22

Note: The percentage change in the truck percentage (X) from Year 2022 to Year 2023 is calculated as follows: $\Delta \mathbf{X}(\%) = \frac{\mathbf{X}_{2023} - \mathbf{X}_{2022}}{\mathbf{X}_{2022}} \times 100$

The following procedures are used for performing the below sensitivity analyses:

- Identifying key factors contributing to the total CHART benefits, which are: traffic volume, the number of blocked lanes, incident duration with and without CHART involvements, truck percentage, value of time, and gas price;
- Computing the marginal impact of each selected factor, using its 2023 value, but setting all other factors identical to those in 2022; and
- Following the same procedures to analyze the sensitivity of the total 2023 benefits with respect to each key factor.

The results of sensitivity analysis for each factor are shown in Table E.16. The increase in the average adjusted AADT by 1.09 percent in 2023 contributed to an increase of 5.39 percent in the total benefit. The number of lane-blockage incidents increased by 3.63 percent in 2023, resulting in the benefit increase of 2.46 percent. Note that the ratio with respect to the performance difference between incident durations with and without CHART involvement decreased by 6.98 percent, and thus directly resulted in a 6.98 percent decrease in the total benefit. An increase of 6.00 percent in the total benefit is due solely to the average raise of 4.70 percent in the MD driving populations' income (i.e., a proxy for time value).

	2,030.56		
	Key Factor	Δ ('22 - '23)	Estimated Benefit
Soncitivity	Adjusted AADT	▲ 1.09%	2,140.07 (▲ 5.39%) ¹
	Number of incidents	▲3.63%	2,080.50 (\$2.46%)
	Incident duration difference be- tween w/ and w/o CHART	▼6.98%	1,888.89 (▼6.98%)
Analysis	Truck percentage	▼2.22%	2,033.77 (▲0.62%)
	Monetary unit of gas price	▼13.14%	2,026.58 (♥0.20%)
	Monetary unit of time value	2,152.49 (▲6.00%)	
	2,230.57 (9.85%)		

Table E.16 Sensitivity Analysis of key factors contributing to the Benefits (Unit: M dollar)

Note: 1. The number in each parenthesis shows the percentage of benefit change from year 2022.

Conclusions and Recommendations

Grounded on the lessons from the earlier studies, this study has conducted a rigorous evaluation of CHART's performance in 2023 and its resulting benefits under the constraints of data availability and quality. Overall, CHART has made significant progress in recording more reliable incident reports, especially after implementation of the CHART-II Database.

However, much remains to be done in terms of collecting more data and extending operations to major local arterials, if resources are available to do so. For example, data regarding the potential impacts of major incidents on local streets have not been collected by CHART. Without such information, one may substantially underestimate the benefits of CHART operations, as most incidents causing lane blockages on major commuting freeways are likely to spill congestion back to neighboring local arterials if traffic queues form more quickly than incidents are cleared. Similarly, a failure to respond to major accidents on local arterials, such as MD-355, may also significantly degrade traffic conditions on I-270. Effectively coordinating with county agencies on both incident management and operational data collection is one of CHART's major tasks.

With respect to overall performance, CHART has maintained nearly the same level of efficiency in responding to incidents and driver assistance requests in recent years. The average response time in Year 2023 was 11.97 minutes (See Figure 4.5). In view of the worsening congestion and the increasing number of incidents in the Washington-Baltimore region, it is commendable that CHART can maintain its performance efficiency with approximately the same level of resources.

This study's main recommendations, based on the performance of CHART in 2023, are listed below:

- Increase the resources for CHART to sustain the high-quality incident response operation, including more staffs and hardware supports.
- Provide constant training to staffs in the control center responsible for recording incident related information to ensure the data quality.
- Develop and update a strategy to allocate CHART's resources between different response centers, based on their respective performance and efficiency so that they can effectively contend with the

ever-increasing congestion and accompanying incidents both in urban and suburban areas.

- Coordinate with county traffic agencies to extend CHART operations to major local routes, and include data collection as well as performance benefits for such roadways in the annual CHART review.
- Make CHART's data quality evaluation report available to the centers' operators for their improvement of data recording and documentation.
- Implement training sessions to educate/re-educate operators on the importance of high-quality data, and discuss how to effectively record critical performance-related information.
- Improve the data structure used in the CHART-II system for recording incident locations to eliminate the need of employing the current laborious and complex procedures.
- Document and re-investigate the database structure on a regular basis to improve the efficiency and quality of collected data.
- Document possible explanations for extremely short or long response and/or clearance times so that the results of performance analysis can be more reliable.
- Integrate police accident data efficiently with the CHART-II incident response database to have a complete representation of statewide incident records.
- Extend the CHART analysis model to investigate the relationship between the incident duration and the probability of incurring secondaries incidents.
- Incorporate the delay and fuel consumption benefits from the reduced potential secondary incidents in the CHART benefit evaluation.

Summary of Key Findings from the 2023 CHART Performance Evaluation

- Both the total number of statewide emergency responses and CHART responses increased from Year 2022 to Year 2023 (by 9.42% and 11.12%, respectively).
- In 2023, the average incident duration with CHART was 25.41 minutes, much shorter than the average of 36.29 minutes for those incidents responded by other agencies. The reduction in the average incident duration is about 30 percent. The average incident duration with CHART of 25.41 minutes was slightly lower than that of 2022 (i.e., 26.02 minutes).
- Both AADT and truck percentage on most major roads were relatively stable in 2023. However, the 2023 truck percentage increased significantly on some major truck routes such as I-495, I-695 and I-70. As a result, the truck delay increased from 1.99 M veh-hr in 2022 to 2.27 M veh-hr in 2023.
- Among major corridors, I-95 experienced the most significant increase in its emergency response frequency in 2023 compared to 2022 (by about 42%). Such an increase is mostly attributed to a significantly higher number of driver's assists on I-95. The total emergency response frequency on US50 also shows an increase of 19%, compared to 2022.
- The total benefit of CHART operation increased by 9.85 percent, where the three main contributors to such benefit increase are AADT increase, higher number of incidents, and higher value of time which contribute 5.39%, 2.46%, and 6.00%, respectively, to the total benefit increase.

The aforementioned changes, along with other factors, collectively contributed to the direct benefits by CHART's performance in 2023.

CHART (Coordinated Highways Action Response Team) is the highway incident management system of the Maryland State Highway Administration (MDOT SHA). Initiated in the mid-80s as "Reach the Beach Program" it was subsequently expanded as a statewide program. The Statewide Operations Center (SOC), an integrated traffic control center for the state of Maryland, has its headquarters in Hanover, Maryland. The SOC is supported by four satellite Traffic Operations Centers (TOCs), of which one is seasonal. CHART's current network coverage consists of statewide freeways and major arterials.

CHART has five major functions: traffic monitoring, incident response, traveler information, traffic management, severe weather and emergency operations. Incident response and traveler information systems have received increasing attention from the general public, media, and transportation experts.

In 1996, incident data were collected and used in the pilot evaluation analysis conducted by the University of Maryland in conjunction with MDOT SHA staff (Chang and Point-Du-Jour, 1998). As this was the first time that previous records were to be analyzed, researchers were inevitably faced with the difficulty of having a database with insufficient information.

The 1997 CHART performance evaluation, compared with 1996, was far more extensive. The researchers were able to obtain a relatively richer set of data, obtained from incident management reports gathered over twelve months from the SOC, TOC-3 (located near the Capital Beltway), and TOC-4 (situated near the Baltimore Beltway). In addition to these data, accident reports from the Maryland State Police (MSP) were also available for secondary incident analysis.

The data used for evaluations have improved significantly since 1999 because CHART recognized the need to keep an extensive operational record in order to justify the costs and estimate the benefits from the emergency response operations. The data available for analysis of lane-closure incidents increased from 5,000 in 1999 to 40,073 reports in 2023. A summary of total emergency response operations documented from 2019 to 2023 is presented in Table 1.1. CHART responded to 29,993 out of 40,073 recorded incidents, and 40,540 out of 42,914 recorded disabled vehicle requests in 2023.

Records	2019	2020	2021	2022	2023
Incidents	38,383	34,590	38,275	38,957	40,073
	(31,750)	(26,702)	(29,546)	(28,972)	(29,993)
Disabled	41,123	35,525	38,447	36,884	42,914
Vehicles	(39,483)	(33,963)	(36,293)	(34,502)	(40,540)
Total	79,506	70,115	76,722	75,841	82,987
	(71,233)	(60,665)	(65,839)	(63,474)	(70,533)

Table 1.1 Iotal Number of Emergency Response Operation Record	Table
---	-------

*Note: 1. "Incidents" indicate any events interrupting traffic flows on main lanes; "disabled vehicles" indicate assists to drivers; and "Total" is the sum of incidents and disabled vehicles.

2. Numbers in each parenthesis show the incidents and assists by CHART.

The objective of this study is to evaluate the effectiveness of CHART's incident detection, response, and traffic management operations on interstate freeways and major arterials. This assessment also includes an estimation of CHART benefits, an essential part of the study, since support of MDOT SHA programs from the general public and state policymakers largely depends on the benefits the state obtains from its ongoing programs. In order to conduct a comprehensive analysis using available data to ensure the reliability of the evaluation results, the evaluation study has been divided into the following three principal tasks:

Task 1: Assessment of Data Sources and Data Quality — involves identifying data sources, evaluating their quality, analyzing available data, and classifying missing parameters.

Task 2: Statistical Analysis and Comparison entails performing comparisons based on data available in 2022 and 2023, with an emphasis on these target areas: incident characteristics, efficiency of incident detection, distribution of detection sources, efficiency of incident response, and effectiveness of incident traffic management.

Task 3: Benefits Analysis — entails the analysis of the reduction in total delay times, fuel consumption, emissions, and secondary incidents due to CHART operations, as well as the reduction in potential accidents due to efficient removal of stationary vehicles in travel lanes by the CHART response team.

The subsequent chapters are structured as follows:

Chapter 2 assesses the quality of data available for the 2023 CHART performance evaluation. This includes the total available incident reports, the percentage of missing data for each critical performance parameter, and a comparison of 2023 data quality with that of 2022.

Chapter 3 outlines the statistical analysis of incident data characteristics, such as distributions of incidents and disabled vehicles by road name, by location on road, by weekday and weekend, by lane blockage type, and by lane-blockage duration. The analysis also includes a comparison of the average incident duration caused by different types of incidents.

Chapter 4 provides a detailed report on the efficiency and effectiveness of incident detection. Issues discussed are the detection rate, the distribution of detection sources for various types of incidents, and driver assists. The chapter also touches on an evaluation of incident response efficiency. The efficiency rate is based on the difference between the incident report time and the arrival time of emergency response units. Also, the assessment of incident clearance efficiency is based on the difference between the arrival time of the emergency response units and the incident clearance time.

Chapter 5 discusses a statistical analysis of response times, which provides fundamental insight into the characteristics of response times under various conditions. In this analysis, the distributions of the average response time are identified by a range of categories, including the time of day, the incident nature, the pavement conditions, the lane blockage status, the involvement of heavy vehicles, and the involved regions.

Chapter 6 performs a statistical analysis of incident durations, similar to Chapter 5. In this analysis, the distributions of the average incident duration are identified by a range of categories, including nature, county, weekdays and weekends, peak and off-peak hours, CHART involvement, pavement conditions, the involvement of heavy vehicles, and the roads.

Chapter 7 estimates the direct benefits associated with CHART's operations. Parameters used for the estimates are the reductions in fuel consumption, delays, emissions, secondary incidents, and potential accidents. CHART's patrol units also respond to a significant number of driver assistance requests, and these services provide direct benefits to drivers and minimize potential rubbernecking delays on highways.

Finally, Chapter 8 offers concluding comments and recommendations for future evaluations.

chapter 2 DATA QUALITY DATA QUALITY DATA SESSMENT ASSESSMENT

This chapter assesses the quality of data available for the CHART 2023 performance evaluation and compares it with the data from CHART 2022.

2.1 Analysis of Data Availability

In 2023, CHART recorded a total of 82,987 emergency response cases. These are categorized into two groups: incidents and disabled vehicles. A summary of the total available incident reports for the years 2021, 2022, and 2023 is shown in Table 2.1.

Available Records		2021		20)22	2023		
		Records	Ratios(%)	Records	Ratios(%)	Records	Ratios(%)	
CHART II	Disabled Vehicles	38,447	50.1	36,884	48.6	42,914	51.7	
Database	Incidents	38,275	49.9	38,957	51.4	40,073	48.3	
Total		76,722	100	75,841	100	82,987	100	

Table 2.1 Comparison of Available Data for 2021, 2022, and 2023

2.2 Analysis of Data Quality

More than 10 million records in 24 tables from the CHART II database have been filtered to obtain key statistics for a detailed evaluation of the data quality. Figures 2.1 and 2.2 illustrate the comparison of the quality of data recorded in 2022 and 2023.

Figure 2.1 Summary of Data Quality with respect to Critical Indicators

Figure 2.2 Summary of Data Quality with respect to Time Indicators

Nature of Incidents/Disabled Vehicles

Data were classified based on the nature of the incidents, such as vehicle on fire, collision-personal injury, and collision-fatality. CHART's records for disabled vehicles are also categorized as abandoned vehicles, tire changes, and gas shortage. As shown in Figure 2.1, about 81.2 percent of emergency responses reported in 2023 recorded the nature of incidents/disabled vehicles, which is lower than that in 2022. Note that the location nature of disabled vehicles has been included in the CHART II database since January 2019.

Detection Sources

As Figure 2.1 shows, about 97 percent of all emergency responses recorded in 2023 contained the source of detection. In 2023, about 94.5 percent of incidents reported and 99.2 percent of the disabled vehicles reported had a definite detection source.

Operational Time-Related Information

To evaluate the efficiency and effectiveness of emergency response operations, CHART in 2023 used the following five parameters for performance measurements: "Received Time", "Dispatched Time", "Arrival Time", "Cleared Time", and "Confirmed Time". Figure 2.2 illustrates the data quality analysis with respect to these performance parameters. The information shown in the figure indicates that the quality of data for "Received Time", "Confirmed Time", and "Arrival Time" are sufficient for reliable analysis, while the data of "Dispatched Time" and "Cleared Time" should be improved to around 90 percent or higher availability.

Type of Reports

The total number of incidents/disabled vehicles managed by each operation center in 2023 is summarized in Table 2.2. In 2023, AOC and SOC managed more incidents/disabled vehicles than in 2022. Overall, 40,073 incidents have been responded to in 2023. Over the same period, the response team also attended to 42,914 disabled vehicle requests.

Operation Center	тосз	TOC4	SOC	тос7	AOC	OTHER	TOTAL
Disabled Vehicles	0	4,918	15,571	5,406	17,010	9	42,914
	(12)	(6,769)	(14,887)	(7,026)	(8,175)	(15)	(36,884)
Incidents	2	5,810	18,543	4,237	11,460	21	40,073
	(6)	(6,498)	(16,683)	(5,374)	(10,386)	(10)	(38,957)
Total	2	10,728	34,114	9,643	28,470	30	82,987
	(18)	(13,267)	(31,570)	(12,400)	(18,561)	(25)	(75,841)

Table 2.2 Emergency Assistance Reported in 2023

Note: Numbers in each parenthesis are the corresponding data from 2022.

Location and Road Name Associated with Each Response Operation

The location and road name information associated with each emergency response operation was used to analyze the spatial distribution of incidents/disabled vehicles and to identify freeway segments that experience frequent incidents. As shown in Figure 2.1, almost all incident response reports have documented location information. This feature has always been properly recorded over the years. However, the location information associated with each response operation is structured in a descriptive text format that cannot be processed automatically with a computer program. Hence, road names and highway segments must be manually located and entered into the evaluation system.

Table 2.3 shows the percentage of data with road names and highway segment location information for incidents and disabled vehicles in the CHART II Database for 2023. Note that about 99.9 percent of data have information related to the locations, but about 61.3 percent of data can be used to identify the event sites (i.e., road names, direction, and exit numbers). For the remaining 38.7 percent of incidents/disabled vehicles data, the location information is either unclear or not specified, and therefore cannot be used for reliable performance analysis.

Data Quality	Incident	Disabled Vehicles	Total	
Road	99.32%	99.40%	99.36%	
Location	Location 99.94%		99.90%	
Valid Data for Road & Location	alid Data for Road & 57.05% Location		61.26%	

	Table	2.3 Data	Quality	Analy	sis with	Respect	to Road	and	Location
--	-------	----------	---------	-------	----------	---------	---------	-----	----------

Lane/Shoulder Blockage Information

To compute the costs of additional delays and fuel consumption caused by each incident requires the information of blocked lanes (including shoulder lanes) as a result of the incident. The analysis of all available data in 2023 shows that up to 64.3 percent of emergency response reports involved lane/shoulder blockage (see Figure 2.1), slightly lower than 65.9 percent in 2022.

In summary, in 2023, improvements have been made in documenting CHART's performance and recording operations-related information. The use of the CHART II Database has had a noticeable positive impact on data quality improvement, but room for improvement still exists, as shown in the above statistics on evaluating data quality. Finally, CHART operators should be made aware of their contributions to mitigation of traffic congestion, driver assistance, and overall improvement of the driving environment.

chapters ANALYSIS OF ANALYSIS DATA DATA CHARACTERISTICS

The evaluation study began with a comprehensive analysis of the spatial distribution of incidents/disabled vehicles and their key characteristics to improve the efficiency of incident management.

3.1 Distribution of Incidents and Disabled Vehicles by Day and Time

The research team analyzed the differences between the distribution of incidents/disabled vehicles during weekdays and weekends. As shown in Table 3.1, a large number (about 79 percent) of incidents/disabled vehicles in 2023 occurred on weekdays. Thus, more resources and personnel are required on weekdays than on weekends to manage the incidents/disabled vehicles more effectively. Note that the percentage of weekday responses by TOC7 increased significantly while SOC experience a slight reduction in the percentage of weekday responses.

Center	тосз		то	C4	тос7		
Year	2023	2022	2023	2022	2023	2022	
Weekdays	0%	100%	79%	78%	90%	78%	
Weekends	Veekends 100%		21%	22%	10%	22%	

Table 3.1 Distribution of Incidents/Disabled Vehicles by Day

Center	SOC		AOC		Other*		Total	
Year	2023	2022	2023	2022	2023	2022	2023	2022
Weekdays	73%	75%	83%	78%	20%	48%	79%	77%
Weekends	27%	25%	17%	22%	80%	52%	21%	23%

* Includes RAVENS TOC and REDSKINS TOC

As defined by the 1999 CHART performance evaluation, peak hours in this study are from 7:00 a.m. to 9:30 a.m. and from 4:00 p.m. to 6:30 p.m. Table 3.2 indicates that 27 percent of incidents/disabled vehicles reported in 2023 occurred during peak hours, about the same level as in 2022.

Table 3.2 Distribution of Incidents/Disabled Vehicles during Peak and Off-Peak Periods

Center	тосз		то	C4	тос7		
Year	2023	2022	2023	2022	2023	2022	
Peak**	0%	28%	33%	30%	33%	28%	
Off-Peak	100%	72%	67%	70%	67%	72%	

Center	SOC		AOC		Other*		Total	
Year	2023	2022	2023	2022	2023	2022	2023	2022
Peak**	21%	22%	29%	25%	0%	20%	27%	25%
Off-Peak	79%	78%	71%	75%	100%	80%	73%	75%

* Includes RAVENS TOC and REDSKINS TOC

** 7:00 a.m. ~ 9:30 a.m. and 4:00 p.m. ~ 6:30 p.m.

Figure 3.1 illustrates the distributions of incidents/disabled vehicles by time of day in more detail. The frequency of incidents in off-peak hours is much higher than in morning or evening peak hours, since there are many more such hours. More detailed information regarding distributions by time of day is presented in the Appendix A.

* Off-PkHR, AM-PkHR, and PM-PkHR stand for Off-Peak hours, AM-Peak hours, and PM-Peak hours, respectively.

Figure 3.1 Distributions of Incidents/Disabled Vehicles by Time of Day in 2023

3.2 Distribution of Incidents and Disabled Vehicles by Road and Location

Figure 3.2 compares the frequency distribution by road between 2023 and 2022, and Figure 3.3 depicts the frequency distribution of incidents and disabled vehicles for 2023.

* "Total" includes incomplete data for road name and direction.

Figure 3.2 Distributions of Incidents/Disabled Vehicles by Road in 2023 and 2022

Figure 3.3 Distributions of Incidents/Disabled Vehicles by Road in 2023

Based on the statistics shown above, the roadways experiencing high incident frequencies for 2023 were I-95 (from the Delaware border to the Capital Beltway), I-695 (Baltimore Beltway), I-495/95 (Capital Beltway), US-50, I-70 and I-270. I-95 suffered from a total of 19,885 incidents/disabled vehicles in 2023, while I-695 had 8,534 incidents/disabled vehicles within the same period. I-495/95, US-50, I-70 and I-270 had 9,768, 7,449, 6,929, and 3,994 incidents/disabled vehicles, respectively. Note that a total of 942 incidents/disabled vehicles in 2023 CHART-II database lack the information of road names for further analysis.

Figures 3.4 and 3.5 present comparisons of frequency distributions by time of day on major roads in Maryland for incidents and disabled vehicles, respectively. As shown in these figures, more incidents were responded during a.m. peak hours than in p.m. peak hours on I-95, I-495/95, and I-695.

I-95, I-270, and US-50 are connected to I-495/95 and are the main contributors of traffic congestion on I-495 during commuting periods. Due to its high traffic volume, any incident on I-495 is likely to cause a spillback of vehicles onto I-95, I-270, and US-50, causing congestion on those three freeways as well. The interdependent nature of incidents between the primary commuting freeways should be considered when prioritizing and implementing incident management strategies. To better allocate patrol vehicles and response units to hazardous highway segments, the distribution of incidents/ disabled vehicles between two consecutive exits was employed as an indicator in the analysis.

Figure 3.4 Distribution of Incidents by Time of Day on Major Roads in 2023

Figure 3.5 Distribution of Disabled Vehicles by Time of Day on Major Roads in 2023

Figure 3.6 shows the distribution of incidents and disabled vehicles by location on I-695 in 2023, while Figure 3.7 highlights the comparison with the results in 2022. Those segments of high incident frequency are from Exit 43 to 44, Exits 17 to 18, and Exit 11 to 12 (338, 306, and 263, respectively). Those two roadway segments near I-70 and I-95 between Exits 17 and 18, and Exits 11 and 12, experienced a high frequency of disabled vehicles (309 and 233 cases).

The subsequent figures show the comparison between 2023 and 2022 incident data, including the geographical distribution of incidents and disabled vehicles on I-495/95 interchanges. Figure 3.8 shows that the highest frequency of incidents (280 cases and 254 cases) occurred from Exits 30 to 31 and Exits 28 to 29 of I-495. The location, plagued by the highest frequency of disabled vehicles (372 cases), occurred on the roadway segment between Exits 17 and 19. A comparison with the data in 2022 is illustrated in Figure 3.9.

CHAPTER 3

Analysis of Data Characteristics

Figure 3.6 Distribution of Incidents/Disabled Vehicles by Location on I-695

Figure 3.6 Distribution of Incidents/Disabled Vehicles by Location on I-695 (cont.)

Figure 3.9 Comparisons of Incidents/Disabled Vehicles Distributions by Location on I-495/I-95

41

Figure 3.10 shows the distribution of incidents and disabled vehicles by location on I-95, and Figure 3.11 compares such distributions between 2023 and 2022. As shown in Figure 3.10, the highest number of incidents occurred at the following three segments: between Exits 67 and 74 (1,126 cases), Exits 55 and 56 (500 cases), Exits 56 and 57 (484 cases). Two segments (i.e., between Exits 67 and 74, and Exits 61 and 64) experienced the highest number of disabled vehicles (1,890 cases and 975 cases, respectively).

In 2023, the I-95 segment between Exit 67 and Exit 74 experienced the highest frequency of 3,016 incidents and disabled vehicles, revealing the same patterns as in 2022 (1,533 cases, ranked the 1st), 2021 (1,216 cases, ranked the 1st) and 2020 (1,193 cases, ranked the 1st) with a signifiantly high number. Those I-95 segments between Exits 54 and 57 were reported to experience fewer requests of responding to incident/disabled vehicles than in 2022, while those between Exits 57 and 109 experienced more.

Figure 3.10 Distributions of Incidents/Disabled Vehicles by Location on I-95

Figure 3.11 Comparisons of Incidents/Disabled Vehicles Distributions by Location on I-95

Figure 3.12 represents the spatial distribution of incidents/disabled vehicles data on I-270 in 2023. The segments between Exits 26 and 31 on I-270 experienced the highest numbers of incidents (149 cases) as well as the highest number of disabled vehicles (202 cases).

Figure 3.12 Distributions of Incidents/Disabled Vehicles by Location on I-270

Figure 3.13 shows a comparison of the distribution of incidents/disabled vehicles on I-270 between 2023 and 2022 data. Those segments from Exit 0 to Exit 9 and from Exit 31 to Exit 32 show higher incident/disabled vehicles requests than those observed in 2022, while segments from Exit 10 to Exit 31 show lower response frequencies than 2022.

Figure 3.13 Comparisons of Incidents/Disabled Vehicles by Location on I-270

3.3 Distribution of Incidents and Disabled Vehicles by Lane Blockage Type

Figure 3.14 illustrates the distribution of incidents by lane blockage in 2023. A large portion of those incidents involved one-shoulder or two-lane blockages. The comparison of 2023 incidents/ disabled vehicles distribution by lane blockage with 2022 data is illustrated in Figure 3.15. Note that all reported disabled vehicles are classified as shoulder lane blockages in Figures 3.14 and 3.15.

Note: *This analysis uses only incidents (not including "Disabled Vehicles") **Also includes Shoulder Lane Blockages

Figure 3.14 Distributions of Incidents by Lane Blockage

Note: * Disabled Vehicles are all classified as Shoulder Lane Blockages. ** Also includes Shoulder Lane Blockages.

Figures 3.16 and 3.17 depict a comparison of lane blockage incidents between 2023 and 2022 for major roads in the Washington Metropolitan and Baltimore areas. In 2023, I-495/95 shows an decrease in shoulder lane blockages. Shoulder-lane-only blockages on I-695 and I-70 in Baltimore Region decreased in 2023. Compared to 2022, the number of incidents with two-lane blockages on I-495/95, I-270 and I-70 decreases in 2023.

in the Washington Area

Note: *Disabled Vehicles are all classified as Shoulder Lane Blockages **Also includes Shoulder Lane Blockages

Note: *Disabled Vehicles are all classified as Shoulder Lane Blockages **Also includes Shoulder Lane Blockages

Figure 3.17 Distributions of Lane Blockages Occurring on Major Highways in the Baltimore Region

Note: *Disabled Vehicles are all classified as Shoulder Lane Blockages **Also includes Shoulder Lane Blockages

Figure 3.17 Distributions of Lane Blockages Occurring on Major Highways in the Baltimore Region (cont.)

Note that disabled vehicles caused most of the shoulder lane blockages. Most of the disabled vehicles were recorded as a result of driver assist requests due to flat tires, minor mechanical problems, or gas shortages.

3.4 Distribution of Incidents and Disabled Vehicles by Lane Blockage Duration

Lane blockage analysis naturally leads to the comparison of incident duration distribution. Figure 3.18 illustrates a relation between lane blockages and their average durations on each major freeway.

*Note: *Also includes shoulder lane blockages.*

**Numbers in each parenthesis show the percentage of data available.

Figure 3.18 Incident Duration by Lane Blockages and Road

It is quite obvious that CHART's highway network has experienced a high frequency of incidents, ranging from twenty minutes to more than one hour in duration. These incidents are clearly primary contributors to traffic congestion in the entire region, especially on the major commuting highway corridors of I-495, I-695, I-270, and I-95, making it imperative, therefore, to continuously improve traffic management and incident response systems.

As shown below, most disabled vehicles did not block traffic for more than half an hour. About 68 percent of incidents and disabled vehicles had durations of less than 30 minutes.

Figure 3.19 Distributions of Incidents/Disabled Vehicles by Duration in 2023

Although most incidents in 2023 were not severe, their impacts were significant during peak hours. Clearing the blockages did not require special equipment, and the incident duration was highly dependent on the travel time of the incident response units.

Figure 3.20 presents the distribution of records in 2023 and its comparison with 2022 data. About 27 percent, and 18 percent of reported incidents/disabled vehicles managed by TOC-4, and TOC-7, respectively, blocked traffic lasting longer than 30 minutes. For SOC, about 34 percent of reported incidents lasted longer than 30 minutes, the same level as in 2022.

chapter A EVALUATION OF EFFICIENCY AND EFFECTIVE NESS

4.1 Evaluation of Detection Efficiency and Effectiveness

An automatic incident detection system has yet to be implemented by CHART. Therefore, CHART has no means of evaluating the detection and false-alarm rates. Also, at this point, CHART has no way to determine the time taken by the traffic control centers to detect an incident from various sources after its onset. Therefore, this evaluation of detection efficiency and effectiveness focuses only on the incident response rate and on the distribution of detection sources.

The response rate is defined as the ratio of the total number of traffic incidents/disabled vehicles reported to the CHART control center to those responded by the CHART emergency response teams. Based on the 2023 incident management records, the overall response rate was 88.96 percent. As in the previous year, existing incident reports did not specify the reasons for ignoring some requests. It appears that most of the ignored incidents happened during very light traffic periods or were not sufficiently severe to cause any significant traffic blockage or delay. Notwithstanding the lack of an automated incident detection system, CHART has maintained an effective coordination system with state and municipal agencies that deal with traffic incidents and congestion.

Figures 4.1 and 4.2 illustrate the distributions of incidents/disabled vehicles by detection source for control centers TOC 4 and TOC7, respectively.

Note: 1. Numbers in [] show the percentages from Year 2022.

2. Actual frequencies for incidents/disabled vehicles detected by No info., System Alarm, MDTA, MCTMC, and Media in 2023 are 0, 1, 8, 0 and 3 in the CHART-II database.

TOC 7

Note: 1. Numbers in [] show the percentages from Year 2022.

2. Actual frequencies for incidents/disabled vehicles detected by No Info., System Alarm, MDTA, MCTMC, and Media in 2023 are 1, 10, 0, 0, and 1 in the CHART-II database.

Figure 4.2 Distributions of Incidents/Disabled Vehicles by Detection Source for TOC 7

With respect to the distribution of all detection sources, the statistics in Figure 4.3 clearly show that about 41.7 percent of incidents in 2023 were detected by MSHA/CHART patrols, lower than in 2022. 31.0 percent were reported by the MDTA, higher than that in 2022. About 14 percent were reported by the MSP, slightly lower than that in 2022.

Note: 1. Numbers in [] show the percentages from Year 2022.

2. Actual frequency for incidents/disabled vehicles detected by No info. and System Alarm in 2023 is 0 and 24 in the CHART-II database.

Figure 4.3 Distributions of Incidents/Disabled Vehicles by Detection Source

4.2 Analysis of Response Efficiency

The distributions of response times and incident durations were used to analyze the efficiency of incident responses. The response time is defined as the interval between the onset of an incident and the arrival of response units. Since the actual starting time of an incident is unknown, the response time used in this analysis is based on the difference between the time that the response center received a request and the time of arrival of the response unit at the incident site.

The average response time for incidents/disabled vehicles in 2023 is given in Figure 4.4. The average response time in 2023 was 12.74 minutes, slightly faster than that of 2022 (12.88 minutes).

In Figure 4.5 the average response times to incidents by TOC 4, TOC 7 and SOC are fairly consistent throughout the year and are between 10 and 15 minutes. AOC shows fairly quick and consistent response times between 8.6 and 10.1 minutes for incidents through year 2023. On the other hand, the response times for disabled vehicles range between 9 and 23 minutes. AOC and TOC 7 exhibited a relatively shorter response time for disabled vehicles throughout the year, compared to SOC and TOC 4. Overall, the average response time for AOC is shorter than for most TOCs over the entire year for both incidents and disabled vehicles.

Note: 1. Incident data only for response times between 1 minute and 60 minutes are used for this analysis.

Figure 4.5 Average Response Times for Operation Centers by Month in 2023

Figure 4.6 shows that all operation centers exhibited slightly faster response times for incidents occurred during non-holidays in 2023. AOC, SOC, and TOC 4 showed shorter response times for disabled vehicles on holidays than on non-holidays.

Note: 1. Incident data only for response times between 1 minute and 60 minutes are used for this analysis.

- 2. Numbers in each parenthesis show the data availability.
- 3. Holidays include New Year's Day, Martin Luther King Jr. Day, Washington's Birthday, Memorial Day, Independence Day,

Labor Day, Columbus Day, Veterans Day, Thanksgiving Day, and Christmas Day

Figure 4.6 Average Response Times for Operation Centers on Holidays and Non-holidays in 2023

Figures 4.7 to 4.11 present the average response times by time of day during weekdays for each operation center. The bar graph represents the average incident frequencies to which the operation center responded, where the line graph illustrates its average response times by the time of day. Overall, the response times by AOC and SOC vary with the operational hours through the day, demontrating longer response times during nighttime. Since SOC operates as the backup of TOCs 4 and 7 after their operational hours (5 a.m. - 9 p.m.), incident response frequencies during non-operational hours are much higher than those by major TOCs (see Figures 4.9 and 4.10).

The response times by TOC 4 and TOC 7 are quite consistent during their operational periods (5 a.m. - 9 p.m.), although the responded incident frequencies by TOC 4 and TOC 7 are higher during p.m. peak hours.

Note: Incident data only for response times between 1 minute and 60 minutes are used for this analysis.

Figure 4.7 Average Response Times for AOC by Time of Day on Weekdays in 2023

Note: Incident data only for response times between 1 minute and 60 minutes are used for this analysis.

Figure 4.8 Average Response Times for SOC by Time of Day on Weekdays in 2023

Figure 4.9 Average Response Times for TOC4 by Time of Day on Weekdays in 2023

Figure 4.10 Average Response Time for TOC7 by Time of Day on Weekdays in 2021

Note: 1. Incident data only for response times between 1 minute and 60 minutes are used for this analysis.

2. Numbers in each parenthesis show frequencies.

3. CF, CPD, and CPI represent collision-fatality, collision-property damage, and collision-personal injury, respectively.

4. Others include weather closures police activities, off-road activities, emergency roadwork, debris in roadway, and vehicles on fire.

Figure 4.11 Average Response Times for Operation Centers by Incident Nature in 2023

With respect to the pavement conditions, each operation center shows different response patterns under different pavement conditions. Overall, AOC tends to show a shorter average response time than any other operation center under dry and wet pavement conditions (See Figure 4.12). Snow/Ice conditions oftern result in longer response times.

Note: 1. Incident data only for response times between 1 minute and 60 minutes are used for this analysis. 2. Numbers in the parenthesis show the data availability for this analysis.

Figures 4.13 through 4.14 present the response times for operation centers by detection source. The bar graph represents the available data to compute the frequency, while the line graph represents the computed average response times. The major detection source for AOC is MDTA, while the state police and CHART units detect the most incidents to which SOC responded. For SOC, on average, the incidents detected by CHART units have relatively fast responses.

Figure 4.14 Average Response Times for SOC by Detection Source in 2023

As shown in Figure 4.15 and 4.16, the major detection source for the events responded to by TOC 4 is state police while for TOC 7, CHART and citizen are the two major detection sources. In addition, the incidents detected by CHART response units have relatively shorter response time than

Figure 4.15 Average Response Times for TOC 4 by Detection Source in 2023

Figure 4.16 Average Response Times for TOC 7 by Detection Source in 2023

4.3 Analysis of Clearance Efficiency

As is well recognized, the efficiency of incident clearance could be varied by many factors. Figure 4.17 summarizes the clearance efficiency of incidents/disabled vehicles by operation center. The average clearance time by SOC is longer than any other for incidents. On the other hand, TOC7 show the smallest average clearance times for incidents and disabled vehicles. Further analyses of incident clearance times are presented in Chapter 6.

Clearance Time(min)

■ Incident ■ Disabled Vehicles

Note: Data only for incident duration between 1 minute and 120 minutes are used for this analysis.

Figure 4.17 Average Clearance Times by Operation Center in 2023

4.4 Reduction in Incident Duration

An essential performance indicator is the reduction in average incident duration due to the operations of CHART. Theoretically, a before-and-after analysis would be the most effective way to evaluate CHART's effects on incident duration. However, no incidentmanagement-related data prior to CHART exists for any meaningful assessment. Hence, this study used the alternative of comparing average incident clearance times in 2023 for non-responded incidents and those to which CHART responded. Since CHART's incident management team responded to most incidents in 2023, the data for non-CHART incidents are very limited.

Table 4.1 shows the comparisons of incident durations with and without the response of CHART teams. In 2023, the average incident duration with CHART is 25.41 minutes, shorter than the average duration of 36.29 minutes. It seems clear that the assistance of CHART response units reduced the clearance time of reported incidents. On average, CHART in 2023 contributed to a reduction in blockage duration of about 30.00 percent, which has certainly contributed significantly to savings in travel times, fuel consumption, and related socioeconomic costs.

Note that incidents with durations of less than one minute were excluded from the analysis. Incidents of "Unknown Lane Blockage" were redistributed to shoulder-only incidents and one-lane blockage incidents, which are mostly for minor incidents with the highest frequency.

Table 4.1 Comparisons of Incident Durations for Various Types of Lane Blockages in 2023 (Duration= Cleared Time-Received Time)

Blockage	With CHART Patrol		Without CH	IART Patrol	Incidents with CHART but took longer durations than the average duration of those without CHART (B)		
	Duration (min)	Sample Frequency (A)	Duration (min) (B)	Sample Frequency	Sample Frequency (C)	Percentage (C/A *100)	
Shoulder	20.09	5,811	33.15	443	1,251	21.52%	
1 lane	23.14	11,667	33.17	859	3,161	27.10%	
2 lanes	38.92	2,588	55.89	126	356	13.76%	
3 lanes	44.33	749	48.28	41	297	39.65%	
>=4 lanes	48.34	355	75.70	28	61	17.18%	
Weighted Average	25.41 (26.02)	21,170 (21,800)	36.29 (37.54)	1,497 (1,522)			
Unknown	16.29	6,394	26.43	694			

Note: 1. Incidents with durations of less than 1 minute were excluded from the analysis.

2. Cases of "Unknown" blockage were redistributed into different blockage categories.

3. The numbers in parentheses show the results from year 2022.

chapters ANALYSIS ANALYOF OF TIMES RESPONSE TIMES

A large body of traffic studies has pointed out the critical role of efficient response to the total delay incurred by incidents, and concluded that an increase in incident response time may contribute to the likelihood of having secondary incidents (Bentham, 1986; Brodsky and Hakkert, 1983; Mueller et al., 1988). The study results by Sanchez-Mangas et al. (2009) show that a reduction of 10 minutes in emergency response time could result in 33 percent less probability of incurring vehicle collision and fatalities. Most studies conclude that dispatching emergency services units and clearing the incident scenes in a timely manner are the key tasks for minimizing incident impact (Kepaptsoglou et al., 2011: Huang and Fan, 2011).

For these reasons, this chapter presents the results from the statistical analysis of incident response time; this analysis provides a fundamental insight into the characteristics of incident response times under various conditions.

5.1 Distribution of Average Response Times by Time of Day

Figure 5.1 compares the response times by time of day in 2023 and 2022. In 2023, the average incident response times during off-peak were slightly longer than those of 2022, while the average response time during a.m. peak hours and p.m. peak hours were shorter than that in 2022. Also, the average response times to disabled vehicles during off-peak hours in 2023 were slightly longer than those in 2022, while the average response time during a.m. peak hours and p.m. peak hours and p.m. peak hours were slightly longer than those in 2022, while the average response time during a.m. peak hours and p.m. peak hours were shorter than that in 2022. As expected, the response times to incidents and disabled vehicles during off-peak hours were longer than those during peak hours due likely to the resource constraints.

Figure 5.1 Distributions of Average Response Times by Time of Day in 2023 and 2022

Figure 5.2 shows the average response times by different times of day on the major roads. Among those, the incidents on I-270 experienced the longest responses time during both a.m. peak and off-peak hours. Regarding the average response times to disabled vehicles, those on I-495 and I-270 experienced the longest during a.m. and p.m. peak hours, respectively.

Note: 1. Data only for response times between 1 minute and 60 minutes are used for this analysis. 2. Numbers in each parenthesis show frequencies.

5.2 Distribution of Average Response Times by Incident Nature

Figure 5.3 shows that the response times are likely to decrease for detected severe incidents. For instance, those incidents, causing any fatality or injuries (CF and CPI), usually lead to quicker responses than any other types of incidents.

A similar pattern of decreased response times as the incident becomes severe appears on most of the major corridors as shown in Figure 5.4.

Note: 1. Incident data only for response times between 1 minute and 60 minutes are used for this analysis.

2. Numbers in each parenthesis show frequencies.

- 3. CF, CPD, and CPI represent collision-fatality, collision-property damage, and collision-personal injury, respectively.
- 4. Others include police activities, off-road activities, emergency roadwork, debris in roadway, and vehicles on fire.

Note: 1. Incident data only for response times between 1 minute and 60 minutes are used for this analysis. 2. Numbers in each parenthesis show frequencies.

Figure 5.4 Average Response Time for Roads by Incident Nature in 2023

5.3 Distribution of Average Response Times by Various Factors

This section presents the results of analysis on how other factors would influence the response times.

Figure 5.5 illustrates that the response times may vary with the pavement conditions. The responses are likely to be slower on snow/ice pavement, whereas they tend to be faster on a dry condition. The information on the weather conditions is usually unavailable in most incident databases.

Note: 1. Incident data only for response times between 1 minute and 60 minutes are used for this analysis.
2. Numbers in parentheses show frequencies.

Figure 5.5 Average Response Time by Pavement Condition in 2023

As shown in Figure 5.6, incidents causing lane closure are likely to be responded faster than those incidents without lane closure. Figures 5.4 and 5.6 illustrate that the response times are likely to be shorter for more severe incidents, such as those causing a fatality, an injury, or a lane closure.

Figure 5.7 shows that incidents involving heavy vehicles, on average, experienced a slightly shorter response time as with only passenger cars.

Note that the response time may differ among regions, due to the discrepancy in the available resources and incident frequency among operation centers, including coverage area, incident rates, traffic volumes, etc. Figure 5.8 demonstrates that the response times were faster in suburban areas, including Eastern and Southern Maryland, than in the metropolitan areas, such as the Baltimore and Washington regions. Urban areas are more likely to have higher incident rates and heavier traffic volumes, which could impede the efficiency of response units. One can also notice that the responses for incidents were usually quicker than those for disabled vehicles in most regions.

Note: 1. Incident data only for response times between 1 minute and 60 minutes are used for this analysis. 2. Numbers in parentheses show frequencies.

Note: 1. Incident data only for response times between 1 minute and 60 minutes are used for this analysis.

Figure 5.8 Average Response Time by Region in 2023

^{2.} Numbers in parentheses show frequencies.

^{3.} There is no record for disabled vehicles at Southern Maryland with valid information.

For effective and efficient traffic management after incidents, responsible agencies can convey information to travelers by updating variable message signs, estimating the resulting queue length, assessing the need to implement detour operations, and performing any other control strategies to mitigate congestion. To maximize the effectiveness of these operational measures, reliably predicted/estimated incident durations will certainly play an essential role.

This chapter presents the statistical results from the incident duration data; this analysis provides some critical insights into the characteristics of incident duration under various conditions. In this analysis, the distributions of average incident duration are classified by the following categories: Nature, County, County and Nature, Weekdays and Weekends, Peak and Off-Peak Hours, CHART Involvement, and Roads.

6.1 Distribution of Average Incident Durations by Nature

In general, incidents are classified into two large groups, based on whether or not they involve collisions. The first group, incidents with collisions, consists of three types: collisions with fatalities (CFs), collisions with personal injuries (CPIs), and collisions with property damage (CPDs). The second group, incidents without collisions, includes incidents of various natures, such as disabled vehicles, debris in the roadway, vehicles on fire, police activities, etc. Table 6.1 summarizes the categories of incidents by their nature as used in the remaining analysis.

Note that Disabled Vehicles are defined as those disabled vehicles that interrupt the normal traffic flow on the main lanes. In the category of incidents without collision, most are Disabled Vehicles. In 2023, about 39 percent of incidents without collision were caused by Disabled Vehicles. A similar pattern was also observed in 2022. In contrast, the other types of non-collision incidents occurred in relatively low frequencies; therefore, the study classifies all such incident types as one category, i.e., Others, as shown in Table 6.1.

		Co	ollisions-Fatalities(CF)		
	With collisions	Collisions-Property Damage(CPD)			
		Collisi	ions-Personal Injuries(CPI)		
Incidents		Disabled Vehicles			
	Without collisions		Police Activities		
			Off-Road Activities		
		Others	Emergency Roadwork		
		Others	Debris in Roadway		
			Vehicles on Fire		
			Weather Closure, etc.		

Table 6.1 Categories	of Incident Nature
----------------------	--------------------

Figure 6.1 summarizes the average incident duration for each type in 2023 and 2022. The statistical results indicate that the average incident duration for CFs is significantly higher than that for the other incident natures. Statistically, an incident that has resulted in a fatality can last more than an hour on average. In contrast, incidents caused by Disabled Vehicles, on average, were much shorter in duration. The average incident duration for CFs in 2023 shows an increase compared to that in 2022.

- Note: 1. Incident data only for incident duration between 1 minute and 120 minutes are used for this analysis
 - 2. CF, CPD, and CPI represent collision-fatality, collision-property damage, and collision-personal injury, respectively.

Figure 6.1 Distribution of Average Incident Duration by Nature in 2023 and 2022

6.2 Distribution of Average Incident Durations by County and Region

he distribution of incident durations also varies between counties and regions. Figures 6.2 to 6.5 illustrate incident durations by county in regions in 2023 and 2022. In the Washington region, Frederick County in 2023 has shorter incident durations than any other county around Washington D.C. (Montgomery and P.G. Counties), as shown in Figure 6.2. Figure 6.3 shows that the incidents especially around Carroll County and Harford County had longer durations than incidents occurring in other counties in the Baltimore region.

Note: Incident data only for incident duration between 1 minute and 120 minutes are used for this analysis Figure 6.2 Distribution of Average Incident Duration by County in Washington Region in 2023 and 2022

Baltimore Region

Note: Incident data only for incident duration between 1 minute and 120 minutes are used for this analysis

Figure 6.3 Distribution of Average Incident Duration by County in Baltimore Region in 2023 and 2022

Incidents that occurred in counties in western and southern Maryland mostly resulted in relatively longer durations. Figure 6.4 shows that the average incident duration in these areas is usually longer than thirty minutes, except for Washington County, which had the shortest average incident duration in western and southern Maryland in year 2023. Similarly, the incidents occurring in Queen Anne's County on the Eastern Maryland (Figure 6.5) are likely to result in shorter durations than those in any other areas of Eastern Shore. On the other hand, incidents occurred in Somerset County and Wicomico County on the Eastern Shore experienced the average incident duration of longer than seventy minutes, respectively, in 2023.

Note: Incident data only for incident duration between 1 minute and 120 minutes are used for this analysis

Note: Incident data only for incident duration between 1 minute and 120 minutes are used for this analysis Figure 6.5 Distribution of Average Incident Duration by County on Eastern Region in 2023 and 2022

Table 6.2 summarizes the average response times, clearance times, and incident durations by region. One can easily notice that incidents occurred in the Southern area took longer to be cleared than any other regions. On the other hand, the Eastern region took shorter time to clear the detected incidents, thus the average incident duration was relatively shorter than those in the other areas in Maryland in 2023.

Decien	Sample	Avg. Response	Avg. Clearance	Avg. Incident
Region	Frequency*	Time (mins)	Time (mins)	Duration (mins)
Baltimore	11,601	8.63	21.79	30.43
Washington	8,023	8.26	20.62	28.88
Eastern	1,579	6.95	19.53	26.48
Western	888	8.48	21.90	30.37
Southern	72	8.86	35.32	44.18

Table 6.2 Summary of Incident Duration Components by Region

* Incident data only for incident duration between 1 minute and 120 minutes are used for this analysis.

Figure 6.6 compares incident durations by nature only for several major counties in Maryland. As shown in the figure, the average incident duration for CF in Frederick County was shorter than in any other area. Among those counties, Prince George's County had the shortest duration for the incident with personal injury.

In all counties below, the incident durations are highly likely to increase as the incident becomes more severe. For instance, the incidents with any fatality or personal injury showed the longest durations, followed by incidents with incidents with property damage.

Duration(min)

■CF ■CPD ■CPI ■DisableVeh ■Others

*Note: 1. Incident data only for incident duration between 1 minute and 120 minutes are used for this analysis.

2. CF, CPD, and CPI stand for collision-fatality incident, collision-property damage incident, and collision-personal injury incident, respectively.

6.3 Distribution of Average Incident Durations by Weekdays/Ends and Peak/Off-Peak Hours

As shown in Table 6.3, incidents occurred in weekends were likely to last longer than those on weekdays. This would be mostly due to the fact that fewer response teams are available during the weekends than during weekdays.

	Year	Sample ¹ Frequency	Avg. Response Time	Avg. Clearance Time	Avg. Incident Duration
Maakdaya	2023	17,159	8.03	20.57	28.60
weekuays	2022	17,444	7.62	21.65	29.28
Weekends	2023	5,008	9.55	23.60	33.15
	2022	5,435	8.98	23.88	32.86

Table 6.3 Distribution of Average Incident Duration by Weekday and Weekend

Note: 1. Incident records with the complete information for duration computation.2. Incident data only for incident duration between 1 minute and 120 minutes are used for this analysis.

Table 6.4 shows that the average clearance time during off-peak hours was longer than during peak hours. Consequently, the average duration for incidents occurring during off-peak hours was longer than for those during peak hours.

· · · · · · · · · · · · · · · · · · ·	Table	6.4 Distribution of	Average Incident	Duration by	Off-Peak and I	Peak Hours
---------------------------------------	-------	---------------------	-------------------------	-------------	-----------------------	------------

	Year	Sample ¹ Frequency	Avg. Response Time	Avg. Clearance Time	Avg. Incident Duration
Off Dook	2023	16,563	8.56	21.68	30.24
Oll-Peak	2022	17,224	8.16	22.43	30.59
Peak ²	2023	5,604	7.80	20.01	27.81
	2022	5,655	7.30	21.42	28.72

Note : 1. Incident records with the complete information for duration computation.

2. Peak hours: 7:00 AM to 9:30 AM and 4:00 PM to 6:30 PM

3. Incident data only for incident duration between 1 minute and 120 minutes are used for this analysis.

6.4 Distribution of Average Incident Durations by CHART Involvement, Pavement Condition, Heavy Vehicle Involvement, and Road

Whether or not CHART responded to an incident is another significant factor affecting the distribution of incident durations. When CHART was involved in the incident recovery task, the incident duration was likely to be reduced. This observation indicates that CHART played an efficient role in shortening incident durations, reducing the delay caused by non-recurrent congestion.

	Year	Sample [*] Frequency	Avg. Response Time	Avg. Clearance Time	Avg. Incident Duration
	2023	904	20.54	31.09	51.64
W/O CHART	2022	959	19.18	31.51	50.69
w CHART	2023	21,006	7.85	20.69	28.55
	2022	21,920	7.46	21.77	29.23

Table 6.5 Distribution of Average Incident Duration without and with CHART

Note: 1. Incident records with the complete information for duration computation.

2. Incident data only for incident duration between 1 minute and 120 minutes are used for this analysis.

The response time and clearance time of incidents could vary with the pavement conditions. Figure 6.7 shows that the condition of Wet pavement such as an oil spill may result in a longer response time. Also, Wet and Chemical Wet pavement conditions seem to increase the clearance time when compared with those on the dry condition.

Note: Incident data only for incident duration between 1 minute and 120 minutes are used for this analysis. Figure 6.7 Distribution of Average Incident Duration by Pavement Condition

Figure 6.8 illustrates the influence of heavy vehicles on the average incident durations. In 2023, the clearance for incidents involved with heavy vehicles was likely to take longer times due to their resulting severity, as in previous years.

Note: Incident data only for incident duration between 1 minute and 120 minutes are used for this analysis.

Figure 6.8 Distribution of Average Incident Duration by Heavy Vehicle Involvement

Figure 6.9 shows the distribution of average incident durations by road and nature. Notably, the average incident duration of CFs was much longer than those for other incident types. Also, note that CF incidents occurring on I-270 seemed to exhibit the longest average duration (i.e., 273.91 minutes) among those major roads.

Note:

CF: Collision-fatality incident

CPD: Collision-property damage incident

CPI: Collision-personal injury incident

Figure 6.9 Distribution of Average Incident Duration by Road and Nature

chapter BENEFITSFROM CHART'S WCIDENT MANAGEMENT

Due to the data availability, the benefit assessment for CHART has always been limited to those directly measurable or quantifiable based on incident reports. These direct benefits, both to roadway users and to the entire community, are classified into the following categories:

- assistance to drivers;
- reduction in secondary incidents;
- reduction in driver delay time;
- reduction in vehicle operating hours;
- reduction in fuel consumption; and
- reduction in emissions.

Some other intangible impacts, such as revitalizing the local economy and increasing network mobility, are not included in this benefit analysis.

7.1 Assistance to Drivers

Since the inception of CHART, the public has expressed great appreciation for the timely assistance to drivers by the CHART incident management team. Prompt responses by CHART have directly contributed to minimizing the potential effects of rubbernecking on the traffic flows, particularly during peak hours, where incidents can cause excessive delays. Thus, providing assistance to drivers is undoubtedly one major direct benefit generated by the CHART program.

The distributions of assistance to drivers (labeled as Disabled Vehicles in the CHART II Database) by request type in Year 2023 and Year 2022 are depicted in Figure 7.1. Those assists offered by TOC 4, and TOC 7 are illustrated in Figure 7.2, and Figure 7.3, respectively.

Figure 7.1 Classification of Driver Assistance Requests by Nature in 2023 and 2022

Figure 7.2 Classification of Driver Assistance Requests by Nature for TOC 4

Figure 7.3 Classification of Driver Assistance Requests by Nature for TOC 7

These types of driver assistance in 2023 include flat tires, shortages of gas, or mechanical problems. Note that one requestes may be classified into mutiple categories due to the actual assistance provided. Out of the 42,914 assistance requests, 11,527 assists were related to "out of gas" or "tire changes", higher than the number in 2022 (10,784 cases).

7.2 Potential Reduction in Secondary Incidents

Major accidents are known to induce a number of relatively minor secondary incidents. These may occur as a result of dramatic changes in traffic conditions, such as rapidly spreading queue lengths or substantial drops in traffic speed. Some incidents are caused by rubbernecking effects. Hence, the efficient removal of incident blockage is also beneficial in reducing potential secondary incidents.

Based on the experience gained from previous studies, this study has adopted the following definition for secondary incidents:

- Incidents that occur within two hours from the onset of a primary incident and also within two miles downstream of the location of the primary incident.
- Incidents that happen half a mile either downstream or upstream of the primary incident location in the opposite direction, occurring within half an hour from the onset of the primary incident.

Figure 7.5 shows the distribution of incidents classified as secondary incidents by our definition, using the accident database of the MSP for the year 2023. Notably, 1,150 secondary incidents occurred in 2023. A linear correlation is assumed between the number of secondary incidents and incident duration; the reduction in secondary incidents due to CHART's operations is estimated as follows:

- Number of reported secondary incidents: 1,150
- Estimated number of secondary incidents without CHART, which reduced incident duration by 27.09 percent, calculated as: 1,150/(1-0.2709) = 1,577 incidents
- The number of incidents potentially reduced due to CHART/MDOT SHA operations: 1,577-1,150 = 427

Note that the 427 secondary incidents might have further prolonged the primary incident duration, increasing congestion, fuel consumption, and travel times. These associated benefits are not computed in this report due to data limitations but will be investigated in future studies.

Figure 7.5 Distributions of Reported Secondary Incidents

7.3 Estimated Benefits due to Efficient Removal of Stationary Vehicles

It is noticeable that drivers are often forced to perform undesirable lane-changing maneuvers because of lane blockages around incident sites. Considering that improper lane changes is a prime contributor to traffic accidents, a prolonged obstruction removal certainly increases the risk of collision. Thus, CHART's prompt removal of stationary vehicles in travel lanes may directly alleviate potential lane-changing-related accidents around incident sites.

The estimated results with respect to reduction in potential incidents for selected freeways are reported in Table 7.1. Note that this estimation was made using peak period data. Off-peak data were omitted because they are known to have negligible correlations with the lane-changing maneuvers and accidents. A detailed description of the estimation methodology can be found in the previous CHART performance evaluation reports (chartinput.umd.edu).

Road N	ame	I-495/95	I-95	I-270	I-695	I-70	I-83	I/MD- 295	US-50	Total
Mileage		41	63	32	44	44 13	34	30	42	
No.	2023	201	402	32	170	89	47	44	81	1,066
Dotontial	2022	199	401	56	173	105	46	39	65	1,084
	2021	186	333	53	171	96	36	42	67	984
Incidents	2020	170	264	49	137	71	26	30	53	800
Reduced	2019	175	286	62	156	73	30	21	57	860

Table 7.1 Reduction in Potential Incidents due to CHART Operations

*Note: The analysis has excluded the outlier data (i.e. mean ± 2 standard deviation)

7.4 Direct Benefits to Highway Users

The estimated benefits obtained as a result of reduced delays and fuel consumption are summarized in Table 7.2, where the monetized benefit conversion from delay reduction was based on the unit rates from the U.S Census Bureau (2023) and the Energy Information Administration (2023). Figure 7.6 also shows the difference in benefits between 2022 and 2023.

The evaluation for 2023 has adopted delay reduction for passenger cars and trucks to convert the delays to fuel consumption. One can refer to note 4 under Table 7.2 for details.

The estimated reductions in vehicle emissions for HC, CO, and NO were based on the parameters provided by MDOT and the total delay reduction. Since CO_2 is recognized as a primary factor for global warming, this study also included the estimated CO_2 reduction, based on the information from the Energy Information Administration. Using the cost parameters shown in Table 7.2 (DeCorla-Souza, 1998), the above reduction in emissions resulted in a total savings of 48.53 million dollars. Thus, CHART operations in Year 2023 generated a total net benefit of 2,230.57 million dollars.

Table 7.2 Total Direct Benefits to Highway Users in 2023

Reduction d	ue to CHART	Amount	Unit rate	In M Dollar
			Driver	
	Truck	2 27 (1 00)	\$24.06/hour (23.41) ¹	54.57 (40.08)
Delay (M veh-hr)	HUCK	2.27 (1.99)	Cargo	102 00 (00 54)
			\$45.40/hour	102.99 (90.94)
	Car	40.20 (39.00)	\$49.59/hour (46.50) ²	1,993.57 (1,813.33)
			Gasoline	
Fuel Consumption	tion (N4 collon)	8.20 4	\$3.63/gal (4.06) ³	20.01 (22.10)
Fuel Consump	tion (ivi galion)	(7.78)	Diesel	20.91 (22.19)
			\$4.21/gal (5.00) ³	
	HC(ton)	555.17 (535.87)	\$6,700/ton	
Emission	CO(ton)	6,235.41 (6,018.68)	\$6,360/ton	18 53 (16 81)
	NO(ton)	265.88 (256.64)	\$12,875/ton	40.33 (40.81)
	CO ₂ (metric ton)	75,232.13 (71,201.40)	\$23/metric ton ⁵	
To	tal		\$2,230.57 (2,030.56)	

Note:

* The number in each parenthesis is the data in year 2022.

* All values are rounded to the nearest hundredth in this table only for the presentation purpose, since the actual values need more spaces to be presented. For example, the benefit from truck drivers = 2,268,452.19 veh-hr * \$24.055/ hr = \$54,567,617.43...

Source:

1. The truck driver's unit cost is based on the information from the Bureau of Labor Statistics in year 2023.

2. The car driver's unit cost is based on household income by the U.S. Census Bureau (2023).

3. The gasoline and diesel unit costs are from the Energy Information Administration in year 2023.

4. The fuel consumption was computed based on the rate of 0.156 gallons of gas per hour for passenger cars from the Ohio Air Quality Development Authority and the rate of 0.85 gallon per hour for trucks from the literature "Heavy-Duty Truck Idling Characteristics-Results from a Nationwide Truck Survey" by Lutsey et al. (2004) and the Environmental Protection Agency (EPA).

5. This value is computed based on the unit rates of 19.56 lbs $CO_2/gallon$ of gasoline, 22.38 lbs $CO_2/gallon$ of diesel from the Energy Information Administration and \$23/metric ton of CO_2 from CBO (Congressional Budget Office)'s cost estimate for S. 2191, America's Climate Security Act of 2007.

* The number in the parenthesis shows the data from year 2022

Figure 7.6 Reduction in Delay due to CHART in Year 2023

The total benefits increased from 2,030.56 million dollars in 2022 to 2,230.57 million dollars in 2023. The main factors contributing to the total benefit are listed and tabulated as follows:

• The total number of incidents used for the benefit estimate increased by about 3.63 percent from year 2022 to year 2023 as shown in Table 7.3.

• The ratio, reflecting the difference between incident durations with CHART and those without CHART, decreased from 29.12 percent in 2022 to 27.09 percent in 2023 as shown in Table 7.4.

• Table 7.5 shows that the adjusted AADT in 2023 increased by 1.09 percent on all major roads compared to 2022.

• Table 7.6 shows that average truck percentage decreased in year 2023 over most major roads in Maryland, by 2.22 percent. However, the 2023 truck percentage increased significantly on I-495, I-695 and I-70, which are major truck routes.

• The monetary unit of time value increased by 4.70 percent from 2022 to 2023.

Table 7.3 Total Number of Incidents Eligible for the Benefit Estimate from Year 2022 to Year 2023

	2022	2023	Δ('22 ~ '23) ²
No. of Incidents	32,130	33,297	3.63%

Note: 1.*The incidents causing main lanes blockage are included. The incidents causing only shoulder lanes blockage are excluded for the benefit analysis.*

2. The percentage change in No. of Incidents (X) from Year 2022 to Year 2023 is calculated as follows: $\Delta X(\%) = (X_{2023} - X_{2022})/X_{2022} * 100$

Table 7.4 Average Incident Duration with and without CHART from Year 2022 to Year 2023¹

	With CHART (mins) (A)	Without CHART (mins) (B)	Difference (mins) (B-A)	Ratio in Difference ((B-A)/B)
2022	27.67	39.04	11.37	29.12%
2023	27.42	37.61	10.19	27.09%
Δ('22 ~ '23) ²	-0.90%	-3.66%	-10.38%	-6.98%

Note: 1. The analysis is based on incidents that have main lanes blockage.

2. The percentage change in incident duration (X) from Year 2022 to Year 2023 is calculated as follows: $\Delta X(\%) = (X_{2023} - X_{2022})/X_{2022} * 100$

Table 7.5 The adjusted AADT (with peak hour factor) for Major Roads from Year 2022 to Year 2023

		Year	I-495	I-95	I-270	I-695	MD 295	US 50	US 1	I-83	I-70	Total
$\sum_{segments} AADT(vplph)*PHF$	2022	11,836	7,927	7,076	10,529	4,112	2,356	4,655	2,457	3,220	54,167	
	2023	12,079	7,905	7,612	10,453	4,086	2,404	4,333	2,487	3,400	54,756	
	Δ('22 ~ '23) (%)		2.05	-0.28	7.57	-0.72	-0.62	2.03	-6.92	1.21	5.60	1.09

Note: The percentage change in the adjusted AADT (X) from Year 2023 to Year 2022 is calculated as follows: $\Delta X(\%)=(X_{2023}-X_{2022})/X_{2022}*100$

Table 7.6 Truck percentage for Major Roads from Year 2022 to Year 2023

	Year	I-495	I-95	I-270	I-695	MD295	US 50	US 1	I-83	I-70	Average
Truck (%)	2022	6.15	9.91	4.26	5.88	1.83	8.09	2.77	12.93	8.19	6.67
	2023	7.96	9.77	3.48	6.50	1.77	5.26	3.85	10.43	9.65	6.52
∆('22 ~ '23) (%)	29.59	-1.45	-18.28	10.53	-3.39	-34.96	39.17	-19.36	17.85	-2.22

Note: The percentage change in the truck percentage (X) from Year 2022 to Year 2023 is calculated as follows: $\Delta X(\%) = (X_{2023} - X_{2022})/X_{2022} * 100$

Since each key factor has a different degree of exponential impact on the resulting benefit change, Table 7.7 has further illustrated the results of sensitivity analysis with respect to each key contributor.

	2,030.56		
	Key Factor	∆(′22 ~ ′23)¹	Estimated Benefits ²
	Adjusted AADT	个 1.09 %	2,140.07(个5.39%)
	Number of incidents	个 3.63 %	2,080.50(个2.46%)
Sensitivity	Incident duration percentage differ- ence between w/ and w/o CHART	√6.98 %	1,888.89 (↓6.98%)
Analysis	Truck percentage	↓2.22 %	2,033.77 (个0.62%)
	Monetary unit of gas price	↓ 13.14 %	2,026.58(↓0.20%)
	Monetary unit of time value	个 4.70 %	2,152.49(个6.00%)
	2,230.57(个9.85%)		

Table 7.7 Sensitivity Analysis of key factors contributing to the Benefits (Unit: M dollar)

Note: 1. This field is showing the difference in percentage between 2022 and 2023.

2. The numbers in each parenthesis show the percentage of the benefit change from year 2022.

Note that the sensitivity results shown in Table 7.7 were obtained with the following steps:

- Identifying key factors contributing to the total CHART benefits, which are: traffic volume, the number of incidents resulting in lane blockage, incident duration with and without CHART involvements, truck percentage, value of time, and gas price;
- Computing the marginal impacts of the selected factor, using its 2023 value, but setting all other factors identical to those in 2022; and
- Following the same procedures to analyze the sensitivity of the total 2023 benefits with respect to each key factor

The increase in the average adjusted AADT by 1.09 percent in 2023 contributed to an increase of 5.39 percent in the total benefit. The number of lane-blockage incidents increased by 3.63 percent in 2023, resulting in the benefit increase of 2.46 percent. Note that the ratio with respect to the performance difference between incident durations with and without CHART involvement decreased by 6.98 percent, and thus directly resulted in a 6.98 percent decrease in the total benefit. An increase of 6.00 percent in the total benefit is due solely to the average raise of 4.70 percent in the MD driving populations' income (i.e., a proxy for time value).

This chapter summarizes the benefits for major freeway corridors in 2023 due to CHART's incident response/operations. Table 7.8 shows the number of eligible main-lane-blockage incidents used for the benefit estimate, and the estimated delay reductions due to CHART for each corridor. The reductions in delay due to CHART's services on I-95, I-495/95, I-270, I-695, I-70, and I-83 are 9.75, 4.53, 1.03, 5.70, 2.83 and 0.84 million vehicle-hours, respectively, in 2023.

The total benefits produced from the reduction in delays, fuel consumption, and emissions for each major road in 2023 are summarized in Tables 7.9 (a) to 7.9 (f). The total benefits for I-95, I-495/95, I-270, I-695, I-70, and I-83 in 2023 are \$525.37M, \$239.16M, \$53.44M, \$299.11M, \$152.42M, and \$44.94 M, respectively. Note that the benefits for those six major corridors account for 58.93% of the total CHART benefits of \$2,230.57M.

Table 7.8 Number of Incidents	Used for Benefit Estimate	for the Six Major Corridors in 2023
-------------------------------	---------------------------	-------------------------------------

Corridors	No. of Incidents [*]	Reduction in Delay due to CHART		
connaoro		(M vehicle-hours)		
I-95	6,349	9.75		
I-495	3,635	4.53		
I-270	616	1.03		
I-695	3,603	5.70		
I-70	1,549	2.83		
I-83	1,142	0.84		
Others	16,403	17.78		

Note: Only incidents causing main lanes blockage are included in the benefit estimates, but not those incidents causing only shoulder lanes blockage.

Reduction d	ue to CHART	Amount	Unit rate	In M Dollar
	Truck	1.00	Driver \$24.06/hour ¹	26.19
Delay (M veh-hr)	HUCK	1.09	Cargo \$45.40/hour	49.43
	Car	8.66	\$49.59/hour ²	429.69
Fuel Consumption (M gallon)		4	Gasoline \$3.63/gal ³	
		2.28⁴	Diesel \$4.21/gal ³	8.81
	HC(ton)	127.50	\$6,700/ton	
Fusianian	CO(ton)	1,432.04	\$6,360/ton	11.24
Emission	NO(ton)	61.06	\$12,875/ton	11.24
	CO ₂ (metric ton)	21,393.06	\$23/metric ton⁵	
Total (N	1 dollar)		\$525.37	

Table 7.9(a) Total Direct Benefits for I-95 in 2023

Source:

1. The truck driver's unit cost is based on the information from the Bureau of Labor Statistics in year 2023.

2. The car driver's unit cost is based on the household income by the U.S. Census Bureau (2023).

3. The gasoline and diesel unit costs are from the Energy Information Administration in year 2023.

4. The fuel consumption was computed based on the rate of 0.156 gallons of gas per hour for passenger cars from the Ohio Air Quality Development Authority and the rate of 0.85 gallon per hour for trucks from the literature "Heavy-Duty Truck Idling Characteristics-Results from a Nationwide Truck Survey" by Lutsey et al. (2004) and the Environmental Protection Agency (EPA).

5. This value is computed based on the unit rates of 19.56 lbs $CO_2/gallon$ of gasoline, 22.38 lbs $CO_2/gallon$ of diesel from the Energy Information Administration, and \$23/metric ton of CO_2 from CBO (Congressional Budget Office)'s cost estimate for S. 2191, America's Climate Security Act of 2007.

Reduction d	ue to CHART	Amount	Unit rate	In M Dollar
	Truck	0.20	Driver \$24.06/hour ¹	7.07
Delay (M veh-hr)	THUCK	0.29	Cargo \$45.40/hour	13.34
	Car	4.24	\$49.59/hour ²	210.11
Fuel Consumption (M gallon)			Gasoline \$3.63/gal ³	
		0.91	Diesel \$4.21/gal ³	3.45
	HC(ton)	59.23	\$6,700/ton	
Fusianian	CO(ton)	665.21	\$6,360/ton	F 10
Emission	NO(ton)	28.37	\$12,875/ton	5.19
	CO ₂ (metric ton)	8,401.19	\$23/metric ton⁵	
Total (N	1 dollar)		\$239.16	

Table 7.9(b) Total Direct Benefits for I-495/I-95 in 2023

Table 7.9(c) Total Direct Benefits for I-270 in 2023

Reduction d	ue to CHART	Amount	Unit rate	In M Dollar	
	Truck	0.02	Driver \$24.06/hour ¹	0.73	
Delay (M veh-hr)	HUCK	0.05	Cargo \$45.40/hour	1.38	
	Car	1.00	\$49.59/hour ²	49.49	
Fuel Consumption (M gallon)			Gasoline \$3.63/gal ³	0.67	
		0.18	Diesel \$4.21/gal ³		
	HC(ton)	13.44	\$6,700/ton		
Emission	CO(ton)	150.97	\$6,360/ton	1 17	
Emission	NO(ton)	6.44	\$12,875/ton	1.17	
	CO ₂ (metric ton)	1,642.96	\$23/metric ton⁵		
Total (N	1 dollar)		\$53.44		

Reduction d	ue to CHART	Amount	Unit rate	In M Dollar	
	Truck	0.20	Driver \$24.06/hour ¹	7.05	
Delay (M veh-hr)	HUCK	0.29	Cargo \$45.40/hour	13.30	
	Car	5.41	\$49.59/hour ²	268.14	
Fuel Consumption (M gallon)			Gasoline \$3.63/gal ³	4.11	
		1.09	Diesel \$4.21/gal ³		
	HC(ton)	74.51	\$6,700/ton		
Fusianian	CO(ton)	836.89	\$6,360/ton	6.54	
Emission	NO(ton)	35.69	\$12,875/ton	0.51	
	CO ₂ (metric ton)	10,013.53	\$23/metric ton⁵		
Total (N	1 dollar)		\$299.11		

Table 7.9(d) Total Direct Benefits for I-695 in 2023

Table 7.9(e) Total Direct Benefits for I-70 in 2023

Reduction due to CHART		Amount	Unit rate	In M Dollar	
Delay (M veh-hr)	Truck	0.21	Driver \$24.06/hour ¹	7.50	
	HUCK	0.51	Cargo \$45.40/hour	14.15	
	Car	2.52	\$49.59/hour ²	124.96	
Fuel Consumption (M gallon)		0.66	Gasoline \$3.63/gal ³	2.54	
			Diesel \$4.21/gal ³		
	HC(ton)	37.01	\$6,700/ton		
Emission	CO(ton)	415.73	\$6,360/ton	3.26	
	NO(ton)	17.73	\$12,875/ton		
	CO ₂ (metric ton)	6,178.94	\$23/metric ton⁵		
Total (M dollar)			\$152.42		

Reduction due to CHART		Amount	Amount Unit rate		
	Truck	0.08	Driver \$24.06/hour ¹	1.90	
Delay (M veh-hr)	TTUCK	0.08	Cargo \$45.40/hour	3.58	
	Car	0.76	\$49.59/hour ²	37.78	
Fuel Consumption (M gallon)		0.19	Gasoline \$3.63/gal ³	0.71	
			Diesel \$4.21/gal ³		
Emission	HC(ton)	10.99	\$6,700/ton	0.07	
	CO(ton)	123.45	\$6,360/ton		
	NO(ton)	5.26	\$12,875/ton	0.97	
	CO ₂ (metric ton)	1,735.94	\$23/metric ton⁵		
Total (M dollar)		\$44.94			

Table 7.9(f) Total Direct Benefits for I-83 in 2023

In addition to the above benefit analysis, a reduction in emissions due to reduced travel time in the Baltimore and Washington regions has also been computed. The results are summarized in Tables 7.10(a) and 7.10(b), where the daily delay reductions for the Washington region in 2023 were 1,701 hours/day and 47,462 hours/day for trucks and cars, respectively, compared to the 1,651 hours/day for trucks and 47,935 hours/day for passenger cars in 2022. The delay reduction in the Baltimore region increased from 6,020 hours/day in 2022 to 7,024 hours/day in 2023 and from 105,051 hours/ day in 2022 to 107,146 hours/day in 2023 for trucks and passenger cars, respectively. The overall reductions in emissions (i.e., by cars and trucks) for the entire region were \$186,655/day and \$180,043/day_for the years 2023 and 2022, respectively.

Truck		Total by CHART		Washington Region		Baltimore Region	
		Year 2023	Year 2022	Year 2023	Year 2022	Year 2023	Year 2022
Annual Delay Reduction	hour	2,268,452	1,994,218	442,181	429,147	1,826,271	1,565,072
Daily Delay Reduction	hour	8,725	7,670	1,701	1,651	7,024	6,020
Emission Reduction							
HC reduction	ton/day	0.114	0.100	0.039	0.035	0.075	0.065
	\$/day	764.20	671.81	262.92	234.02	501.28	437.80
CO reduction	ton/day	1.281	1.126	0.441	0.392	0.840	0.734
	\$/day	8,147.63	7,162.66	2,803.19	2,495.02	5,344.44	4,667.64
NO reduction	ton/day	0.055	0.048	0.019	0.017	0.036	0.031
	\$/day	703.31	618.29	241.97	215.37	461.34	402.92
CO ₂ reduction	metric ton/ day	75.30	66.20	25.91	23.06	49.40	43.14
	\$/day	1,732.01	1,522.63	595.90	530.39	1,136.11	992.24
Total	\$/day	11,347.15	9,975.39	3,903.99	3,474.79	7,443.16	6,500.60

Table 7.10(a) Delay and Emissions Reductions for Trucks Due to CHART/MSHA Operations for Washington and Baltimore Regions

Table 7.10(b) Delay and Emissions Reductions for Cars Due to CHART/MSHA Operations for Washington and Baltimore Regions

Car		Total by CHART		Washington Region		Baltimore Region	
		Year 2023	Year 2022	Year 2023	Year 2022	Year 2023	Year 2022
Annual Delay	hour	40 109 002	20 006 241	12 240 125	11 692 000		27 212 242
Reduction	nour	40,196,092	56,990,541	12,340,135	11,085,000	27,057,957	27,313,342
Daily Delay	hour	154 608	1/0 086	17 162	11 025	107 146	105 051
Reduction	noui	134,000	149,900	47,402	44,955	107,140	105,051
Emission Reduction							
HC reduction	ton/day	2.021	1.961	0.695	0.683	1.326	1.278
HC reduction	\$/day	13,541.98	13,137.13	4,659.12	4,576.15	8,882.86	8,560.99
CO reduction	ton/day	22.701	22.023	7.810	7.671	14.891	14.351
coreduction	\$/day	144,379.98	140,063.63	49,673.94	48,789.30	94,706.04	91,274.33
NO reduction	ton/day	0.968	0.939	0.333	0.327	0.635	0.612
NO reduction	\$/day	12,463.01	12,090.42	4,287.90	4,211.54	8,175.11	7,878.88
CO2 reduction	metric ton/ day	214.05	207.65	73.64	72.33	140.41	135.32
	\$/day	4,923.14	4,775.95	1,693.80	1,663.64	3,229.33	3,112.31
Total	\$/day	175,308.10	170,067.14	60,314.76	59,240.63	114,993.34	110,826.52

chapter 8 CONCLUSIONS AND AND AND ATIONS RECOMMENDATIONS

Chapter 8 Conclusions and Recommendations

8.1 Conclusions

Building on the previous research experience, this study has conducted a rigorous evaluation of CHART's performance in 2023 and its resulting benefits under the constraints of data availability and quality. Overall, CHART has made significant progress in recording more reliable incident reports, especially after implementation of the CHART-II Database.

However, much remains for CHART to do in terms of collecting more data and extending its operations to major local arterials if resources are available to do so. For example, data associated with the potential impacts of major incidents on local streets have not been collected by CHART. Without such information, one may substantially underestimate the benefits of CHART operations, as most incidents causing lane blockage on major commuting freeways are likely to spill their congestion back to neighboring local arterials if the speed of traffic queue formation is faster than the pace of progress on incident clearance. Similarly, a failure to respond to major accidents on local arterials, such as MD-355, may also significantly degrade traffic conditions on I-270. Effectively coordinating with county agencies on both incident management and operational data collection is one of the major tasks to be done by CHART.

With respect to its performance, CHART has maintained nearly the same level of efficiency in responding to incidents and driver assistance requests in recent years. The average response time in 2023 was 12.73 minutes. In view of the worsening congestion and the increasing number of incidents in the Washington-Baltimore region, it is commendable that CHART can maintain its performance efficiency with diminishing resources.

In brief, CHART operations by MDOT SHA in Year 2023 have yielded significant benefits by assisting drivers, and by reducing delay times and fuel consumption, as well as emissions. Other, indirect benefits could be estimated if appropriate data regarding traffic conditions before and after incidents were collected during each operation. Such benefits include impacts related to secondary incidents, potential impacts on neighboring roadways, and reductions in driver stress on major commuting corridors. In addition, an in-depth analysis of the nature of incidents and their spatial distribution may offer insight into developing safety improvement measures for the highway networks covered by CHART.

Chapter 8 Conclusions and Recommendations

8.2 Recommendations and Further Development

The main recommendations, based on the performance of CHART in 2023, are listed below:

- A strategy should be developed and updated to allocate CHART's resources between different response centers, based on their respective performance and efficiency so that they can effectively contend with the ever-increasing congestion and accompanying incidents both in urban and suburban areas.
- CHART's quality evaluation report should be made available to the operators to facilitate their continuous improvement of response operations.
- CHART should coordinate with county traffic agencies to extend its operations to major local routes and to include the data collection, as well the performance benefit, in the annual CHART review.
- Training sessions should be implemented to educate/re-educate operators on the importance of high-quality data and discuss how to effectively record critical performance-related information.
- The data structure used in the CHART-II system for recording incident locations should be improved to eliminate the current laborious, complex procedures.
- The database structure should be documented and re-investigated on a regular basis to improve the efficiency and quality of collected data.
- Possible explanations for extremely short or long response and/or clearance times should be documented so that the results of performance analysis can be more reliable.
- Police accident data should be efficiently integrated into the CHART incident response database in order to have a complete representation of statewide incident records.
- The benefits of reduced potential secondary incidents on delay and fuel consumption should be incorporated into the CHART benefit evaluation.

REFERENCES

- Amos, G., Shakas, C., and Avery, M., "Incident management systems lessons learned," the 2nd World Congress of ITS, Yokohama, 1995.
- Bentham, G., "Proximity to hospital and mortality from motor vehicle traffic accidents," Soc. Sci. Med., 23, pp. 1021–1026, 1986.
- Brodsky, H., and Hakkert, A.S., "Highway fatal accidents and accessibility of emergency medical services," Soc. Sci. Med., 17, pp. 731–740, 1983.
- 4. Carson, J. L., Legg, B., Mannering, F. L., Nam, D., and Nee, J., "Area incident management programs effective Findings from Washington State," TRB, 78th annual meeting, 1999.
- 5. Chang, G. L., and Point-du-Jour, J. Y., Performance evaluation of CHART the real time incident management system in Year 2003, final report, March 2004.
- 6. Chang, G. L., and Point-du-Jour, J. Y., Performance evaluation of CHART the real time incident management system in Year 2002, final report, March 2003.
- 7. Chang, G. L., and Point-du-Jour, J. Y., Performance evaluation of CHART the real time incident management system in Year 2001, final report, March 2003.
- 8. Chang, G. L., and Point-du-Jour, J. Y., Performance evaluation of CHART the real time incident management system in Year 2000, final report, March 2002.
- 9. Chang, G. L., and Point-du-Jour, J. Y., Performance evaluation of CHART, incident management program in 1999, final report, July 2001.
- 10. Chang, G. L., and Point-du-Jour, J. Y., Performance and benefit evaluation for CHART, incident management program in 1997, final report, September 2000.
- 11. Chang, G. L., and Point-du-Jour, J. Y., Performance and benefit evaluation for CHART, incident management program in 1996, final report, September 1998.
- 12. CHART incident response evaluation report by COMSIS, 1996.
- 13. Cuciti, P., and Janson, B., Courtesy patrol pilot program, final Report, Colorado Department of Transportation, 1993.
- 14. DeCorla-Souza, P., Cohen, H., Haling, D., and Hunt, J., "Using STEAM for benefit-cost analysis of transportation alternatives," Transportation Research Record 1649, 1998.
- DeCorla-Souza, P., Gardener, B., Culp, M., Everet, J., Ngo, C., and Hunt, J., "Estimating costs and benefits of transportation corridor alternatives," Transportation Research Record 1606, 1997.
- Fenno, D., W., and Ogden, M., A., "Freeway service patrols, a state of the practice," Transportation Research Record 1634, 1998.

REFERENCES

- Gilen, D., & Li, J., Evaluation methodologies for ITS applications, California PATH. University of California, Institute of Transportation Studies, Berkley, CA, 1999.
- Gilen, D., Li, J., Dahgren, J., and Chang, E., Assessing the benefits and costs of ITS projects: volume 1. methodology, California PATH, University of California, Institute of Transportation Studies, Berkley, CA, March, 1999.
- Huang, Y., Fan, Y. "Modeling Uncertainties in Emergency Service Resource Allocation." J. Infrastructure Systems 17, 35-41, 2011.
- Incident reports for 1997 from statewide operation center, Traffic Operation Center 3 and 4, State Highway Administration, Maryland.
- 21. ITS benefits database, US Department of Transportation, September 30, 2002.
- Kepaptsoglou, K., M. G. Karlaftis, and G. Mintsis. "A Model for Planning Emergency Response Services in Road Safety." Journal of Urban Planning and Development, in press, 2011.
- Karimi, A., and Gupta, A., "Incident management system for Santa Monica smart corridor," ITE 1993 Compendium of Technical Papers.
- Lutsey, N., Brodrick, C-J., Sperling, D., and Oglesby, C., "Heavy-Duty Truck Idling Characteristics-Results from a Nationwide Truck Survey," Transportation Research Record 1880, 2004.
- 25. Maryland State Police Accident Report in 1997.
- Maryland Wages by Occupation, Department of Business and Economic Development, Maryland.
- 27. Meyer, M., "A toolbox for alleviating traffic congestion and enhancing mobility," ITE, 1996.
- Meyer, M., and Miler, E., Urban transportation planning: a decision oriented approach, 2nd edition, International Edition 2002, McGraw-Hill, 2002.
- 29. Mueller, B. A., F.P. Rivara and A.B. Bergman, "Urban–rural location and the risk of dying in a pedestrian–vehicle collision." J. Trauma, 28, pp. 91–94, 1998.
- Rossi, P.H., and Freeman, H.E. Evaluation: a systematic approach, 5th edition, Sage Publications, Inc., Newbury Park, California, 1993.

REFERENCES

- 31. Sanchez-Mangas, R., Garcia-Ferrrer, A., de Juan, A. Martin Arroyo, A. "The probability of death in road traffic accidents. How important is a quick medical response?", Accident Analysis & Prevention, 42(4), pp. 1048-1056, 2009.
- Skabardonis, A., Pety, K., Noeimi, H., Rydzewski, D., and Varaiy, P. P., "I-880 field experiment: database development and incident delay estimation procedures," Transportation Research Record 1554, 1996.
- 33. "Evaluating safety and health impacts, TDM impacts on road safety, Personal security and public health," TDM Encyclopedia. http://www.vtpi.org/tdm/tdm58.htm
- 34. De Jong, Gerard, "Value of Freight Travel-Time Savings," in Hensher, D.A. and K.J. Buton (eds.): Handbook of Transport Modeling, Elsevier, 2000.
- 35. Levinson, D. and B. Smalkoski, "Value of Time for Commercial Vehicle Operators in Minnesota," University of Minnesota, TRB International Symposium on Road Pricing, 2003.
- 36. Federal Highway Administration, HERS-ST v20: Highway Economic Requirements System -State Version Technical Report. Federal Highway Administration, FHWA¬IF-02-060, 2002.
- Mackie, P.J. et al, Value of Travel Time Savings in the UK Summary Report. Institute for Transport Studies, University of Leeds, for the UK Department for Transport, 2003.

Figure A.1 Distributions of Incidents by Time of Day on I-95 in Year 2023

Frequency

Figure A.2 Distributions of Disabled Vehicles by Time of Day on I-95 in Year 2023

Figure A.3 Distributions of Incidents by Time of Day on I-495 in Year 2023

Figure A.4 Distributions of Disabled Vehicles by Time of Day on I-495 in Year 2023

Figure A.5 Distributions of Incidents by Time of Day on I-270 in Year 2023

Figure A.7 Distributions of Incidents by Time of Day on I-695 in Year 2023

Frequency

Figure A.9 Distributions of Clearance Time by Time of Day in Year 2023

Figure A.10 Distributions of Incident Duration by Time of Day in Year 2023

Figure A.11 Distributions of Incident Duration by Time of Day on I-95 in Year 2023

■Incidents ■Disabled Vehicles

Figure A.12 Distributions of Incident Duration by Time of Day on I-495 in Year 2023

Figure A.13 Distributions of Incident Duration by Time of Day on I-270 in Year 2023

Figure A.14 Distributions of Incident Duration by Time of Day on I-695 in Year 2023

Figure A.16 Distributions of Incident Duration by Time of Day on I-83 in Year 2023

APPENDIX B - Benefit Estimation Procedure and Sensitivity Analysis

✤ The procedure to estimate the total benefit induced by the CHART performance

APPENDIX C - Sources of Images Used in This Report

P18: From Maryland State Highway Administration (SHA)

P20, P78:

https://www.wikiwand.com/en/Snowplow http://ops.fhwa.dot.gov/publications/fhwahop10014/s3.htm http://www.wilmacco.com/solutions/public-safety/public-safety-solutions/manage-and-assess/ publishing-and-sharing

P25: http://md511.org/

P39, P97:

http://www.localdvm.com/news/maryland-sha-prepared-months-ago-for-early-snowfall/213241385 https://www.freightshuttle.com/media/ http://wxxinews.org/post/rochester-drivers-dont-rank-well-new-accident-survey

P58:

http://www.chart.state.md.us/

P87: https://www.assistpatrol.com/ http://marylandroads.com/Pages/release.aspx?newsId=2041

P104:

http://apps.roads.maryland.gov/webprojectlifecycle/ProjectPhotos.aspx?projectno=AW5181115 http://www.denverpost.com/2016/03/16/denvers-stretch-of-i-25-ranks-as-nations-50th-worst-for-traffic/