

Year 2023 (draft) August 2024

Performance Evaluation and Benefit Analysis For CHART

- Coordinated Highways Action Response Team -

Traffic Safety and Operations Lab Department of Civil and Environmental Engineering The University of Maryland, College Park

Office of Transportation Mobility and Operations State Highway Administration

Performance Evaluation of CHART

The Real-Time Incident Management System (Year 2023)

Table of Contents

EXECUTIVE SUMMARY	
CHAPTER 1. INTRODUCTION	17
CHAPTER 2. DATA QUALITY ASSESSMENT	
2.1 Analysis of Data Availability	
2.2 Analysis of Data Quality	
CHAPTER 3. ANALYSIS OF DATA CHARACTERISTICS	
3.1 Distribution of Incidents and Disabled Vehicles by Day and Time	
3.2 Distribution of Incidents and Disabled Vehicles by Road and Location	
3.3 Distribution of Incidents and Disabled Vehicles by Lane Blockage Type	47
3.4 Distribution of Incidents and Disabled Vehicles by Blockage Duration	53
CHAPTER 4. EVALUATION OF EFFICIENCY AND EFFECTIVENI	ESS57
4.1 Evaluation of Detection Efficiency and Effectiveness	
4.2 Analysis of Response Efficiency	62
4.3 Analysis of Clearance Efficiency	74
4.4 Reduction in Incident Duration	75
CHAPTER 5. ANALYSIS OF RESPONSE TIMES	77
5.1 Distribution of Average Response Times by Time of Day	
5.2 Distribution of Average Response Times by Incident Nature	
5.3 Distribution of Average Response Times by Various Factors	

6.1 Distribution of Average Incident Durations by Nature
6.2 Distribution of Average Incident Durations by County and Region
6.3 Distribution of Average Incident Durations by Weekdays/Ends, Peak/Off-Peak Hours92
6.4 Distribution of Average Incident Durations by CHART Involvement, Pavement
Condition, Heavy Vehicle Involvement, and Road93
CHAPTER 7. BENEFITS FROM CHART'S INCIDENT MANAGEMENT96
7.1 Assistance to Drivers
7.2 Potential Reduction in Secondary Incidents100
7.3 Estimated Benefits due to Efficient Removal of Stationary Vehicles102
7.4 Direct Benefits to Highway Users103
CHAPTER 8. CONCLUSIONS AND RECOMMENDATIONS115
8.1 Conclusions
8.2 Recommendations and Further Development118
REFERENCES
APPENDIX A: Additional Analysis to incidents/disabled vehicles122
APPENDIX B: Benefit Estimation Procedure 129
APPENDIX C: Sources of Images Used in This Report

EXECUTIVE SUMMARY

Objectives

This report presents the performance evaluation study of the Coordinated Highways Action Response Team (CHART) for the Year 2023, including its operational efficiency and resulting benefits. The research team at the Civil Engineering Department of the University of Maryland, College Park (UM), has conducted the annual CHART performance analysis over the past twenty-four years for the State Highway Administration (SHA).

Similar to previous studies, the focus of this task was to evaluate the effectiveness of CHART's ability to detect and manage incidents on major freeways and highways. Assessing the benefits resulting from incident management was equally essential. In addition, this annual report has extended the analysis of incident duration distributions on major highways for better understanding of the incident characteristics and management.

The study consisted of two phases. Phase 1 focused on defining objectives, identifying the available data, and developing the methodology. The core of the second phase involved assessing the efficiency of the incident management program and estimating the resulting benefits using the 2023 CHART incident operations data. As some information essential for efficiency and benefit assessment was not available in the CHART-II database, this study presents only those evaluation results that can be directly computed from the incident management data or derived with statistical methods.

Available Data for Analysis

Upon a request made by SHA, COSMIS began evaluating CHART operations performance in 1996. During the initial evaluation, the 1994 incident management data from the Traffic Operations Center (TOC) were reviewed but for various reasons were not used. Thus, the conclusions drawn were based mostly on information either from other states or from nationwide averaged data published by the Federal Highway Administration.

To better the evaluation quality and also in view of the fact that the Statewide Operations Center (SOC) has been opened in August of 1995, those associated with the evaluation study concluded that the analysis should be based on actual performance data from the CHART program. Hence, in 1996, the UM (Chang and Point-Du-Jour, 1998) was contracted to work jointly with SHA staff to collect, and subsequently research item to analyze incident management data.

This original study and evaluation analysis inevitably faced the difficulty of having insufficient information for analysis, since this was the first time CHART had to collect all previous performance records for a scrupulous evaluation.

The 1997 CHART performance evaluation had the advantage of having relatively substantial information. The collected information comprised incident management records from the Statewide Operations Center (SOC), TOC-3 (positioned in the proximity of the Capital Beltway), and TOC-4 (sited near the Baltimore Beltway) over the entire year, as well as 1997 Accident Report Data from the Maryland State Police (MSP) for secondary incident analysis.

Unlike previous studies, the quality and quantity of data available for performance evaluation have been increased considerably since 1999. This results from CHART reflect the need to keep an extensive operational record in order to justify its costs and to evaluate the benefits of the emergency response operations. Due to CHART's efficient data collection, the records of lane-closure-related incidents increased from 2,567 in 1997 to 40,073 in 2023.

Table E.1 shows the total number of emergency response operations assiduously documented from 2019 to 2023.

	2019	2020	2021	2022	2023	Δ (2023-2022)
Incidents only	38,383	34 <i>,</i> 590	38,275	38,957	40,073	2.86%
	(31,750)	(26,702)	(29,546)	(28,972)	(29,993)	(3.52%)
Total ¹	79,506	70,115	76,722	75,841	82,987	9.42%
Iotal -	(71,233)	(60 <i>,</i> 665)	(65 <i>,</i> 839)	(63 <i>,</i> 474)	(70,533)	(11.12%)

Table E.1 Summary of the Total Number of Emergency Responses from 2019 to 2023

Note: 1. Total includes incidents and disabled vehicles (i.e., assists to drivers). 2. Number in the parenthesis shows the incidents or assists responded by CHART.

The main findings from Table E.1 are listed below:

- The total number of recorded incidents in 2023 increased by 2.86% compared to 2022.
- The number of incidents responded by CHART in 2023 increased by 3.52% compared to 2022.
- The numbers of both total emergency responses (including disabled vehicles) and those responded by CHART increased significantly in 2023.

Evolution of the Evaluation Work

CHART has consistently worked to improve its data recording for both major and minor incidents over the past two decades, which accounts for the substantial improvements in data quality and quantity. The evaluation work has also been advanced by the improved availability of data. It has also become imperative to assess the quality of available data and to use only reliable data in the benefit analysis. Thus, from 1999, the performance evaluation reports have included data quality analysis. This aims to ensure continued advancement in the quality of incidentrelated data so as to reliably estimate all potential benefits of CHART operations.

From February 2001, all incidents requesting emergency assistance have been recorded in the CHART-II information system, regardless of CHART's involvement or not. This has significantly enriched the available data for analysis. In the current CHART database system, most incident-related data can be generated directly for computer processing, except that incident-location-related information remains documented in a text format that cannot be processed automatically with a data analysis program.

Distribution of Incidents/Disabled Vehicles

The evaluation methodology was created to use all available data sets that are considered to be of acceptable quality. An analysis of incident characteristics by incident duration and number of blocked lanes was initially conducted.

As shown in Table E.2, the 2023 incident records indicate that there were a total of 3,100 incidents resulting in one-lane blockage, 9,399 incidents causing two-lane closures, and 5,843 incidents blocking three or more lanes. In addition, either disabled vehicles or minor incidents caused a total of 45,044 shoulder blockages. A comparison of the lane-blockage incidents and disabled vehicles data over the past five years is summarized in Table E.2:

Table L.2 List of incluents/Disabled vehicles by Lane blockage Type									
	2019	2020	2021	2022	2023	∆ (2023-2022)			
Shoulder ²	48,485	41,409	45,258	44,933	45,044	1.71%			
1 lane	3,480	3,221	3,290	3,320	3,100	-6.63%			
2 lanes ³	8,823	8,205	9,328	9,238	9,399	1.74%			
3 lanes ³	2,965	2,780	3,062	3,235	3,392	4.85%			
≥ 4 lanes ³	2,301	2,331	2,472	2,457	2,451	-0.24%			

 Table E.2 List¹ of Incidents/Disabled vehicles by Lane Blockage Type

*Note: 1. This analysis is based only on the samples with complete information for the lane blockage status.
2. Shoulder Lane Blockages include events that have disabled vehicles (i.e., assists to drivers)
3. A shoulder lane blockage is counted as one lane blockage (e.g., 2-lane blockage can either be two travel lanes or one travel lane and one shoulder blockage.)

Most of those incidents/disabled vehicles were distributed along six major commuting corridors: I-495/95, which experienced a total of 9,768 incidents/disabled vehicles in 2023; I-695, I-95, US-50, I/MD-295, and I-270 with 8,534, 19,885, 7,449, 2,756, and 3,994 incidents/disabled vehicles, respectively. CHART managed an average of 54 emergency requests per day on I-95 alone, and 27, 23, 20, 8 and 11 responses per day for I-495/95, I-695, US-50, I/MD-295, and I-270, respectively. The distribution of incidents/disabled vehicles on those major commuting corridors between 2018 and 2023 is shown in Table E.3:

	2019	2020	2021	2022	2023	Δ (2023 - 2022)
I-495/95	10,589	10,339	12,068	10,371	9,768	-5.81%
I-695	10,705	8,025	8 <i>,</i> 585	9,529	8 <i>,</i> 534	-10.44%
I-95	14,729	12,937	12,838	14,052	19,885	41.51%
US-50	7,208	6,492	7,807	6,272	7,449	18.77%
I/MD-295	3,152	2,694	3,120	2,738	2,756	0.66%
I-270	4,892	4,058	4,484	4,200	3,994	-4.9%

|--|

* This analysis is based on incidents and disabled vehicles having the information of their event locations recorded in the database. Freeway segments experiencing most incidents and disabled vehicle assists during the AM and PM hours in 2023 are shown in Table E.4. The highest frequency of incidents occurred on the I-95 northbound segment between Exits 67 and 74 in both AM and PM peaks, respectively. The southbound segment on I-95 between Exits 67 and 74 ranked the first with the respect to the number of disabled vehicle requests in 2023 in both AM and PM peak hours, respectively.

Table E.4 Top 10 Freeway Segments with the Most Incidents/Disabled Vehicles in 2023

		Incid	ents		Disabled vehicles				
	AM	Peak	PM	Peak	AM Peak		PN	I Peak	
1	I-95 N	Exit 67&74	I-95 N	Exit 67&74	I-95 S	Exit 67&74	I-95 S	Exit 67&74	
2	I-95 S	Exit 56&57	I-95 N	Exit 55&56	I-95 N	Exit 67&74	I-95 N	Exit 67&74	
3	I-695 IL	Exit 43&1	I-95 S	Exit 67&74	I-95 N	Exit 64&67	I-95 N	Exit 64&67	
4	I-95 S	Exit 67&74	I-95 S	Exit 56&57	I-95 N	Exit 61&64	I-95 S	Exit 62&64	
5	I-95 N	Exit 55&56	I-695 IL	Exit 11&12	I-95 N	Exit 80&85	I-95 N	Exit 77&80	
6	I-95 N	Exit 74&77	I-95 N	Exit 74&77	I-95 S	Exit 62&64	I-95 S	Exit 100&109	
7	I-495 OL	Exit 27&28	I-95 N	Exit 64&67	I-95 S	Exit 64&67	I-95 S	Exit 64&67	
8	I-895 S	Exit 8&12	I-95 N	Exit 61&64	I-95 N	Exit 77&80	I-95 N	Exit 100&109	
9	I-95 S	Exit 58&59	I-895 S	Exit 8&12	I-95 N	Exit 89&93	I-95 S	Exit 93&100	
10	I-95 S	Exit 74&77	I-95 S	Exit 64&67	I-95 S	Exit 77&80	I-95 N	Exit 61&64	

* This analysis is based on incidents and disabled vehicles having the information of their event locations recorded in the database. It should be mentioned that most incidents/disabled vehicles on major freeways did not block traffic for more than one hour. For instance, about 74 percent of incidents/disabled vehicles had durations shorter than 30 minutes in 2023. This observation can be attributed to the nature of the incidents and, more probably, to the efficient response of CHART. The distributions of incidents/disabled vehicle duration from 2019 to 2023 are summarized in Table E.5:

Duration (Hrs)	2019	2020	2021	2022	2023
D < 0.5	73%	73%	72%	72%	74%
0.5 ≤ D < 1	16%	15%	15%	16%	15%
1 ≤ D < 2	7%	7%	8%	8%	7%
2 ≤ D	5%	5%	5%	5%	4%

* This analysis is based on incidents and disabled vehicles (i.e., assists to drivers) which have complete information for the event duration.

In brief, it is apparent that the highway networks served by CHART are still plagued by a high frequency of incidents with durations ranging from 10 to over 120 minutes. Those incidents were the primary contributors to traffic congestion in the entire region, especially on the major commuting highway corridors, such as I-95, I-270, I-495/95, and I-695.

Efficiency of Operations

Detection, response, and traffic recovery are the three vital performance indicators associated with an incident management program. Unfortunately, data needed for the detection and response time analysis are not yet available under the CHART data system. SHA patrols and MSP remain the main sources of incident detection and response.

The average response time is defined as the average time from receiving an emergency request to the arrival of an emergency response unit. Table E.6 shows the average response times of 14.88, 11.51, 14.40, and 9.95 minutes for TOC-4, TOC-7, SOC, and AOC, respectively, in 2023. Note that as of January 2022, TOC-3 has been relocated to SOC due to staff related issues. TOC-7, SOC and AOC provided more prompt response services in 2023 than in 2022, while TOC-4 experiences a slightly increase in response time in 2023. Note that incidents/disabled vehicles included in this analysis were responded by various units, including CHART and non-CHART agencies.

Response	2019 2020 2021 20		20 2021 2022			2023 ⁵	
Time (mins)	2015	2020	2021	C	During OH ⁴	After OH	Overall
TOC-4	13.40	12.98	14.03	14.51	14.88 (4,427)	12.41 (13)	14.88 (4,440)
TOC-7	11.38	11.42	11.83	11.78	11.51 (2,873)	10.59 (313)	11.42 (3,186)
SOC	13.93	14.32	14.67	14.79	14.40 (11,266)	N/A	14.40 (11,266)
AOC	8.99	9.03	9.45	10.04	9.95 (8,616)	N/A	9.95 (8,616)
OTHER	11.68	2.53	8.58	13.09	N/A	6.51 (16)	6.51 (16)
Weighted Average	11.88	11.64	12.25	12.88	12.76 (27,183)	10.47 (342)	12.74 (27,525)

Table E.6 Evolution of Response Times^{1,2,3} by Center from 2019 to 2023

* Note: 1. This analysis is based on the data of incidents and disabled vehicles (i.e., assists to drivers) which have indicated the responsible operation center and response times.

2. This analysis includes those sample data which have response times between 1 minute and 60 minutes.

3. Events included in this analysis were responded by various units, including CHART, fire boards, state/local polices, private towing companies, etc.

4. OH stands for Operational Hours: TOC-7 operates 5 a.m. – 9 p.m. Monday through Friday. TOC-3 and TOC-4 began operating seven days a week (5 a.m. - 9 p.m.) as of August 30th, 2017. SOC and AOC operate on a 24 hour/seven-days-a-week basis.

5. The number in each parenthesis indicates the numbers of available samples with acceptable quality for analysis.

Table E.7 presents that incidents are likely to be responded more promptly than disabled vehicles during operational hours among all response centers in 2023. The average incident response time for CHART units in 2023 is 11.97 minutes, demonstrating a pattern similar to that of 2022.

Response	Operational Hours ³		Non-oper	ational Hours	Total			
Time (mins)	Incident	Disabled Vehicle	Incident	Disabled Vehicle	Incident	Disabled Vehicle	Sub-total	
TOC-4	14.30 (3,241) ⁴	18.74 (1,262)	12.98 (13)	N/A	14.30 (3,254)	18.74 (1,262)	15.54 (4,516)	
TOC-7	11.91 (2,290)	12.95 (566)	11.29 (237)	9.28 (72)	11.85 (2,527)	12.54 (638)	11.99 (3,165)	
SOC	13.77 (7,752)	18.69 (3,265)	N/A	N/A	13.77 (7,752)	18.69 (3,265)	15.23 (11,017)	
AOC	8.18 (5,575)	10.72 (2,477)	N/A	N/A	8.18 (5 <i>,</i> 575)	10.72 (2,477)	8.96 (8,052)	
OTHER	19.60 (1)	N/A	7.18 (14)	1.47 (1)	8.01 (15)	1.47 (1)	7.60 (16)	
Weighted Average	11.98 (18,859)	15.66 (7,570)	11.15 (264)	9.17 (73)	11.97⁵ (19,123)	15.60 (7,643)	13.01 (26,766)	

* Note: 1. This analysis is based on the dataset of incidents and disabled vehicles (assistance to drivers) which have indicated responsible operation center and response times.

2. This includes those sample events for which available response times of CHART units are between 1 minute and 60 minutes. Events included in this analysis were responded to by CHART.

3. Operational Hours: TOC-7 operate 5 a.m. – 9 p.m. Monday through Friday. TOC-4 began operating seven days a week (5 a.m. - 9 p.m.) as of August 30th, 2017. SOC and AOC operate on a 24 hour/seven-days-a-week basis.

4. The number in each parenthesis indicates the numbers of available samples with acceptable quality for analysis.

5. The average incident response time for CHART units is 11.97088 minutes in 2023.

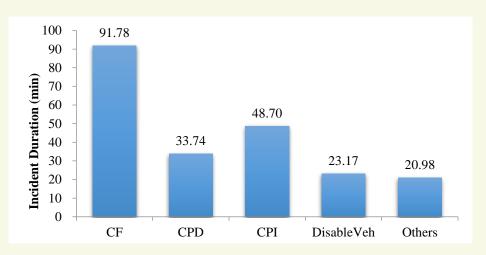
Also, the 2023 data show that CHART's response operations are more efficient when incidents are more severe and cause lane blockages. In general, more severe incidents, especially involving in fatalities or heavy vehicles, demand longer clearance times.

Analysis of Incident Durations

To better understand the contributions of the incident management program, the study compared the average duration of incidents to which CHART responded and those managed by other agencies. For example, the difference on the average response times for one-lane-blockage incidents between with and without CHART involvement is about 10.03 minutes.

The duration of incidents managed by CHART response units averaged 25.41 minutes, shorter than the average duration of 36.29 minutes for those incidents by other agencies. On average, CHART operations in Year 2023 reduced the average incident duration by about 30.0 percent.

Year	With CHART (mins)	Without CHART (mins)		
2019	25.75	33.91		
2020	27.04	37.02		
2021	26.31	37.82		
2022	26.02	37.54		
2023	25.41	36.29		


Performance improvement of CHART operations from years 2019 to 2023 is summarized in Table E.8: Table E.8 Comparison of Average Incident Duration* with and without CHART Response

* This analysis is based on incidents which have included the information of event duration, lane blockage, and response units.

For effective and efficient traffic management after incidents, responsible agencies can convey the information to travelers by updating the variable message signs. They can also estimate the resulting queue length and assess the need to implement detour operations and any other control strategies to mitigate congestion. To maximize the effectiveness of those operational strategies, a reliably predicted/estimated incident duration will certainly play an essential role.

Hence, this study conducted a statistical analysis of incident durations, which provides some further insights into the characteristics of incidents under various conditions. In this analysis, the distributions of average incident duration are identified by predefined categories, including Nature, County, County and Nature, Weekdays and Weekends, Peak and Off-Peak Hours, CHART Involvement, and Roads.

The average duration for incidents involving fatalities (CF) was 92 minutes, while those causing property damage (CPD) and personal injuries (CPI) lasted, on average, 34 and 49 minutes, respectively (see Figure E.1). The average duration for incidents by only disabled vehicles was 21 minutes, close to those classified as "Others" (e.g., debris, vehicles on fire, police activities, etc.).

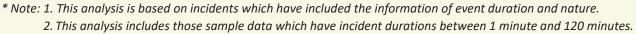


Figure E.1 Distribution of Average Duration by Incident Nature in 2023

Performance of MSP TIM units

As of February 1, 2023, the Maryland State Police (MSP) has a dedicated motorcycle unit to act as MDOT SHA's CHART Traffic Incident Management (TIM) Unit, which works directly with the CHART Field Patrol Units and communicates directly with CHART traffic management centers (TMCs) during the bulk of in-service hours and special events, helping to alleviate pressure on local MSP barracks. This unit also serves as the primary point-of-contact and response for MDOT SHA Departmental crashes in several of its Districts and as the first point-of-contact and coordination point for MSP resources during special events (funeral processions, football games, etc.). It is able to handle reports and investigation in most cases, giving MDOT SHA more direct access to information quickly. Table E.9 shows that the TIM units responded to more than 500 events in 2023 and led to faster responses to incidents.

		With MSP TIM Units (A) ¹	With CHART but without MSP TIM unit (B)	With CHART (A+B)					
Number of Responded Events									
Number of Disabled	Vehicle Assists	99	40,441	40,540					
Number of Incident	Responses	435	29,558	29,993					
Total Number of Re	esponded Events	534	69,999	70,533					
	ectiveness								
Average Despense	Disabled Vehicles	17.62	15.59	15.60					
Average Response Time (min) ²	Incidents	10.17	11.22	11.21					
	Total	10.98	12.50	12.49					
Average CHART	Disabled Vehicles	17.88	15.59	15.60					
Response Time	Incidents	12.66	11.96	11.97					
(min) ³	Total	13.21	13.00	13.01					
Average Duration	Disabled Vehicles	26.97	14.82	14.84					
Average Duration	Incidents	40.76	28.45	28.69					
(min)⁴	Total	39.19	21.57	21.69					

Table E.9 Performance of MSP TIM units in Year 2023

Note:1. One event may be responded to by more than one TIM units.

2. This includes those sample events for which available response times of any response units, including CHART, fire boards, state/local polices, private towing companies, etc., are between 1 minute and 60 minutes.

3. This includes those sample events for which available response times of CHART units are between 1 minute and 60 minutes.

4. This includes those sample events for which the durations are between 1 minute and 120 minutes.

Resulting Benefits

The benefits due to CHART operations were estimated directly from the available data, including assistance to drivers and reductions in delay times, fuel consumption, emissions, and secondary incidents. In 2023, CHART responded to a total of 29,993 incidents, and assisted 40,540 highway drivers who may otherwise have caused incidents or rubbernecking delays to highway traffic. In addition, the efficient removal of stationary vehicles and large debris from travel lanes by CHART patrol units may have prevented 1,066 potential lane-changing-related collisions in 2023, as vehicles approaching those conditions would have been forced to perform unsafe mandatory lane changes.

CORSIM, a traffic simulation program produced by the Federal Highway Administration (FHWA),

was used to estimate the direct benefits attributed to delay reduction time, and it was discovered that various factors, including traffic and heavy vehicle volumes, the number of lane closures, the number of incident responses, and incident durations, affect the resulting delay (see Chapter 7 for further information on benefits estimate). For instance, several primary factors (such as the number of incidents eligible for the benefit estimate and drivers' value of time) have increased in 2023. The ratio in difference between incident durations of with and without CHART exhibits a decrease in 2023. Overall, the delay reduction due to CHART's services in 2023 (42.47 million vehicle-hours) increased by 3.60 percent, compared to the performance in 2022 (40.99 million vehicle-hours). The collective impacts of all those key contributing factors have resulted in a net benefit increase from \$2,030.56M in 2022 to \$2,230.57M in 2023. A comparison of the direct benefits from reduced delay times, fuel consumptions, and emissions, from 2019 to 2023, is summarized in Table E.10:

	Total Direct Benefits (million) ^{1,2,3,4}	# of Incidents Eligible for the Benefit Estimate⁵
2019	\$1.393.38	30,793
2020	\$1,080.83	28,513
2021	\$1,875.25	31,253
2022	\$2,030.56	32,130
2023	\$2,230.57	33,297

Table E.10 Comparison of Direct Benefits from 2019 to 2023

Note: 1. Results are based on the data of the corresponding year from the U.S Census Bureau and Energy Information Administration.

2. The direct benefits represent reductions from delay time, fuel consumptions, and emissions due to the CHART effective operations.

3. The direct benefits rely on numerous factors (i.e., traffic and heavy vehicle volumes, the number of lane blockages, the number of incidents responded, and incident durations).

4. The direct benefits are estimated based on the car delay reduction occurring over all roads covered by CHART and the truck delay reduction only occurring along major roads.

5. The direct benefits are estimated only based on the incidents causing travel lane closure(s).

Most benefits were produced from delay reductions due to CHART's efficient incident response and management, especially along the major corridors which are the primary contributors to traffic congestion in Maryland. The estimated delay reduction due to CHART's services on I-95, I-495, I-270, I-695, I-70, and I-83 are 9.75, 4.53, 1.03, 5.70, 2.83, and 0.84 million vehicle-hours, respectively, in 2023. Such direct benefits for users over each major road in 2023 are summarized in Table E.11:

Roads	Total Direct Benefits (million) ^{1,2,3}	# of Incidents Eligible for the Benefit Estimate ⁴
I-95	\$525.37	6,349
I-95/495	\$239.16	3,635
I-270	\$53.44	616
I-695	\$299.11	3,603
I-70	\$152.42	1,549
I-83	\$44.94	1,142
Others	\$916.14	16,403
Total	\$2,230.57	33,297

Table E.11 Direct Benefits for Major Roads in 2023 due to CHART operations

Note: 1. Results are based on the data of the corresponding year from the U.S Census Bureau and Energy Information Administration.

2. The direct benefits represent reductions in car/truck delay times, fuel consumptions, and emissions due to the CHART effective operations.

3. The direct benefits vary with some key factors, including traffic and heavy vehicle volumes, the number of lane blockages, the number of incidents responded, and incident durations.

4. The direct benefits are estimated only based on the incidents causing travel lane closure(s).

The main contributing factors used for estimating benefits are listed and tabulated as follows:

- The total number of incidents used for the benefit estimate increased by about 3.63 percent from year 2022 to year 2023, as shown in Table E.12.
- The ratio, reflecting the difference between incident durations with CHART and those without CHART, decreased from 29.12 percent in 2022 to 27.09 percent in 2023, as shown in Table E.13.
- Table E.14 shows that the adjusted AADT in 2023 increased by 1.09 percent on the major roads in Maryland compared to 2022.
- Table E.15 shows that average truck percentage decreased in year 2023 over all major roads in Maryland, by 2.22 percent on average. However, the truck percentage in year 2023 increased significantly on I-495, I-695 and I-70, which are major truck routes.

Table E.12 The Total Number of Incidents Eligible for the Benefit Estimate

	2022	2023	Δ('22 ~ '23) ²
No. of Incidents ¹	32,130	33,297	3.63%

Note: 1. They only include the incidents causing main lanes blockage. To estimate benefits, the incidents causing only shoulder lanes blockage are excluded.

2. The percentage change in No. of Incidents (X) from Year 2022 to Year 2023 is calculated as

follows:
$$\Delta \mathbf{X}(\%) = \frac{X_{2023} - X_{2022}}{X_{2022}} \times 100$$

Table E.13 Incident duration reduction in year 2022 and 2023¹

	With CHART(mins)	Without CHART(mins)	Difference (mins)	Ratio in Difference		
	(A)	(B)	(B-A)	((B-A)/ B)		
2022	27.67	39.04	11.37	29.12%		
2023	27.42	37.61	10.19	27.09%		
Δ ('22 ~ '23) ²	-0.90%	-3.66%	-10.38%	-6.98%		

Note: 1. The analysis is based on incidents that have main lanes blockage.

2. The percentage change in incident duration (X) from Year 2022 to Year 2023 is calculated as

follows: $\Delta \mathbf{X}(\%) = \frac{X_{2023} - X_{2022}}{X_{2022}} \times 100$

	Year	I-495	I-95	I-270	I-695	MD 295	US 50	US 1	I-83	I-70	Total
\sum AADT(vplph)*PHF	2022	11,836	7,927	7,076	10,529	4,112	2,356	4,655	2,457	3,220	54,167
segments	2023	12,079	7,905	7,612	10,453	4,086	2,404	4,333	2,487	3,400	54,756
Δ('22 ~ '23) (%)*		2.1%	-0.3%	7.6%	-0.7%	-0.6%	2.0%	-6.9%	1.2%	5.6%	1.09%

Table E.14 The adjusted AADT (with peak hour factor) for Major Roads from 2022 and 2023

Note: The percentage change in the adjusted AADT(X) from Year 2022 to Year 2023 is calculated as follows:

$$\Delta \mathbf{X}(\%) = \frac{\mathbf{X}_{2023} - \mathbf{X}_{2022}}{\mathbf{X}_{2022}} \times 100$$

Table E.15 Truck percentage for Major Roads from year 2022 and 2023

	Year	I-495	I-95	I-270	I-695	MD 295	US 50	US 1	I-83	I-70	Average
Truck %	2022	6.15	9.91	4.26	5.88	1.83	8.09	2.77	12.93	8.19	6.67
Truck %	2023	7.96	9.77	3.48	6.50	1.77	5.26	3.85	10.43	9.65	6.52
Δ('22 ~ '2	3)(%)*	29.6%	-1.5%	-18.3%	10.5%	-3.4%	-35.0%	39.2%	-19.4%	17.9%	-2.22

Note: The percentage change in the truck percentage (X) from Year 2022 to Year 2023 is calculated as

follows: $\Delta \mathbf{X}(\%) = \frac{X_{2023} - X_{2022}}{X_{2022}} \times 100$

The following procedures are used for performing the below sensitivity analyses:

- Identifying key factors contributing to the total CHART benefits, which are: traffic volume, the number of blocked lanes, incident duration with and without CHART involvements, truck percentage, value of time, and gas price;
- Computing the marginal impact of each selected factor, using its 2023 value, but setting all other factors identical to those in 2022; and
- Following the same procedures to analyze the sensitivity of the total 2023 benefits with respect to each key factor.

The results of sensitivity analysis for each factor are shown in Table E.16. The increase in the average adjusted AADT by 1.09 percent in 2023 contributed to an increase of 5.39 percent in the total benefit. The number of lane-blockage incidents increased by 3.63 percent in 2023, resulting in the benefit increase of 2.46 percent. Note that the ratio with respect to the performance difference between incident durations with and without CHART involvement decreased by 6.98 percent, and thus directly resulted in a 6.98 percent decrease in the total benefit. An increase of 6.00 percent in the total benefit is due solely to the average raise of 4.70 percent in the MD driving populations' income (i.e., a proxy for time value).

	2,030.56			
	Estimated Benefit			
	Adjusted AADT	▲ 1.09%	2,140.07 (▲5.39%) ¹	
Sensitivity Analysis	Number of incidents	▲3.63%	2,080.50 (\$2.46%)	
	Incident duration difference be- tween w/ and w/o CHART	▼6.98%	1,888.89 (▼6.98%)	
	Truck percentage	▼2.22%	2,033.77 (▲0.62%)	
	Monetary unit of gas price	▼13.14%	2,026.58 (♥0.20%)	
	Monetary unit of time value	▲ 4.70%	2,152.49 (▲6.00%)	
	2,230.57 (9.85%)			

Table E.16 Sensitivity Analysis of key factors contributing to the Benefits (Unit: M dollar)

Note: 1. The number in each parenthesis shows the percentage of benefit change from year 2022.

Conclusions and Recommendations

Grounded on the lessons from the earlier studies, this study has conducted a rigorous evaluation of CHART's performance in 2023 and its resulting benefits under the constraints of data availability and quality. Overall, CHART has made significant progress in recording more reliable incident reports, especially after implementation of the CHART-II Database.

However, much remains to be done in terms of collecting more data and extending operations to major local arterials, if resources are available to do so. For example, data regarding the potential impacts of major incidents on local streets have not been collected by CHART. Without such information, one may substantially underestimate the benefits of CHART operations, as most incidents causing lane blockages on major commuting freeways are likely to spill congestion back to neighboring local arterials if traffic queues form more quickly than incidents are cleared. Similarly, a failure to respond to major accidents on local arterials, such as MD-355, may also significantly degrade traffic conditions on I-270. Effectively coordinating with county agencies on both incident management and operational data collection is one of CHART's major tasks.

With respect to overall performance, CHART has maintained nearly the same level of efficiency in responding to incidents and driver assistance requests in recent years. The average response time in Year 2023 was 11.97 minutes (See Figure 4.5). In view of the worsening congestion and the increasing number of incidents in the Washington-Baltimore region, it is commendable that CHART can maintain its performance efficiency with approximately the same level of resources.

This study's main recommendations, based on the performance of CHART in 2023, are listed below:

- Increase the resources for CHART to sustain the high-quality incident response operation, including more staffs and hardware supports.
- Provide constant training to staffs in the control center responsible for recording incident related information to ensure the data quality.
- Develop and update a strategy to allocate CHART's resources between different response centers, based on their respective performance and efficiency so that they can effectively contend with the

ever-increasing congestion and accompanying incidents both in urban and suburban areas.

- Coordinate with county traffic agencies to extend CHART operations to major local routes, and include data collection as well as performance benefits for such roadways in the annual CHART review.
- Make CHART's data quality evaluation report available to the centers' operators for their improvement of data recording and documentation.
- Implement training sessions to educate/re-educate operators on the importance of high-quality data, and discuss how to effectively record critical performance-related information.
- Improve the data structure used in the CHART-II system for recording incident locations to eliminate the need of employing the current laborious and complex procedures.
- Document and re-investigate the database structure on a regular basis to improve the efficiency and quality of collected data.
- Document possible explanations for extremely short or long response and/or clearance times so that the results of performance analysis can be more reliable.
- Integrate police accident data efficiently with the CHART-II incident response database to have a complete representation of statewide incident records.
- Extend the CHART analysis model to investigate the relationship between the incident duration and the probability of incurring secondaries incidents.
- Incorporate the delay and fuel consumption benefits from the reduced potential secondary incidents in the CHART benefit evaluation.

Summary of Key Findings from the 2023 CHART Performance Evaluation

- Both the total number of statewide emergency responses and CHART responses increased from Year 2022 to Year 2023 (by 9.42% and 11.12%, respectively).
- In 2023, the average incident duration with CHART was 25.41 minutes, much shorter than the average of 36.29 minutes for those incidents responded by other agencies. The reduction in the average incident duration is about 30 percent. The average incident duration with CHART of 25.41 minutes was slightly lower than that of 2022 (i.e., 26.02 minutes).
- Both AADT and truck percentage on most major roads were relatively stable in 2023. However, the 2023 truck percentage increased significantly on some major truck routes such as I-495, I-695 and I-70. As a result, the truck delay increased from 1.99 M veh-hr in 2022 to 2.27 M veh-hr in 2023.
- Among major corridors, I-95 experienced the most significant increase in its emergency response frequency in 2023 compared to 2022 (by about 42%). Such an increase is mostly attributed to a significantly higher number of driver's assists on I-95. The total emergency response frequency on US50 also shows an increase of 19%, compared to 2022.
- The total benefit of CHART operation increased by 9.85 percent, where the three main contributors to such benefit increase are AADT increase, higher number of incidents, and higher value of time which contribute 5.39%, 2.46%, and 6.00%, respectively, to the total benefit increase.

The aforementioned changes, along with other factors, collectively contributed to the direct benefits by CHART's performance in 2023.